Search (3 results, page 1 of 1)

  • × author_ss:"Lin, Y."
  • × year_i:[2010 TO 2020}
  1. Lin, Y.; Lin, H.; Xu, K.; Sun, X.: Learning to rank using smoothing methods for language modeling (2013) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 687) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=687,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 687, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=687)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The central issue in language model estimation is smoothing, which is a technique for avoiding zero probability estimation problem and overcoming data sparsity. There are three representative smoothing methods: Jelinek-Mercer (JM) method; Bayesian smoothing using Dirichlet priors (Dir) method; and absolute discounting (Dis) method, whose parameters are usually estimated empirically. Previous research in information retrieval (IR) on smoothing parameter estimation tends to select a single value from optional values for the collection, but it may not be appropriate for all the queries. The effectiveness of all the optional values should be considered to improve the ranking performance. Recently, learning to rank has become an effective approach to optimize the ranking accuracy by merging the existing retrieval methods. In this article, the smoothing methods for language modeling in information retrieval (LMIR) with different parameters are treated as different retrieval methods, then a learning to rank approach to learn a ranking model based on the features extracted by smoothing methods is presented. In the process of learning, the effectiveness of all the optional smoothing parameters is taken into account for all queries. The experimental results on the Learning to Rank for Information Retrieval (LETOR) LETOR3.0 and LETOR4.0 data sets show that our approach is effective in improving the performance of LMIR.
    Type
    a
  2. Lian, T.; Chen, Z.; Lin, Y.; Ma, J.: Temporal patterns of the online video viewing behavior of smart TV viewers (2018) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 4219) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=4219,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 4219, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4219)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In recent years, millions of households have shifted from traditional TVs to smart TVs for viewing online videos on TV screens. In this article, we perform extensive analyses on a large-scale online video viewing log on smart TVs. Because time influences almost every aspect of our lives, our aim is to understand temporal patterns of the online video viewing behavior of smart TV viewers at the crowd level. First, we measure the amount of time per hour spent in watching online videos on smart TV by each household on each day. By applying clustering techniques, we identify eight daily patterns whose peak hours occur in different segments of the day. The differences among households can be characterized by three types of temporal habits. We also uncover five periodic weekly patterns. There seems to be a circadian rhythm at the crow level. Further analysis confirms that there exists a holiday effect in the online video viewing behavior on smart TVs. Finally, we investigate the popularity variations of different video categories over the day. The obtained insights shed light on how we can partition a day to improve the performance of time-aware video recommendations for smart TV viewers.
    Type
    a
  3. Xu, B.; Lin, H.; Lin, Y.: Assessment of learning to rank methods for query expansion (2016) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2929) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2929,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2929, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2929)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Pseudo relevance feedback, as an effective query expansion method, can significantly improve information retrieval performance. However, the method may negatively impact the retrieval performance when some irrelevant terms are used in the expanded query. Therefore, it is necessary to refine the expansion terms. Learning to rank methods have proven effective in information retrieval to solve ranking problems by ranking the most relevant documents at the top of the returned list, but few attempts have been made to employ learning to rank methods for term refinement in pseudo relevance feedback. This article proposes a novel framework to explore the feasibility of using learning to rank to optimize pseudo relevance feedback by means of reranking the candidate expansion terms. We investigate some learning approaches to choose the candidate terms and introduce some state-of-the-art learning to rank methods to refine the expansion terms. In addition, we propose two term labeling strategies and examine the usefulness of various term features to optimize the framework. Experimental results with three TREC collections show that our framework can effectively improve retrieval performance.
    Type
    a