Search (26 results, page 2 of 2)

  • × author_ss:"Liu, X."
  • × language_ss:"e"
  1. Liu, X.; Hu, M.; Xiao, B.S.; Shao, J.: Is my doctor around me? : Investigating the impact of doctors' presence on patients' review behaviors on an online health platform (2022) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 650) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=650,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 650, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=650)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Patient-generated online reviews are well-established as an important source of information for people to evaluate doctors' quality and improve health outcomes. However, how such reviews are generated in the first place is not well examined. This study examines a hitherto unexplored social driver of online review generation-doctors' presence on online health platforms, which results in the reviewers (i.e., patients) and the reviewees (i.e., doctors) coexisting in the same medium. Drawing on the Stimulus-Organism-Response theory as an overarching framework, we advance hypotheses about the impact of doctors' presence on their patients' review behaviors, including review volume, review effort, and emotional expression. To achieve causal identification, we conduct a quasi-experiment on a large online health platform and employ propensity score matching and difference-in-difference estimation. Our findings show that doctors' presence increases their patients' review volume. Furthermore, doctors' presence motivates their patients to exert greater effort and express more positive emotions in the review text. The results also show that the presence of doctors with higher professional titles has a stronger effect on review volume than the presence of doctors with lower professional titles. Our findings offer important implications both for research and practice.
    Type
    a
  2. Cui, Y.; Wang, Y.; Liu, X.; Wang, X.; Zhang, X.: Multidimensional scholarly citations : characterizing and understanding scholars' citation behaviors (2023) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 847) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=847,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 847, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=847)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study investigates scholars' citation behaviors from a fine-grained perspective. Specifically, each scholarly citation is considered multidimensional rather than logically unidimensional (i.e., present or absent). Thirty million articles from PubMed were accessed for use in empirical research, in which a total of 15 interpretable features of scholarly citations were constructed and grouped into three main categories. Each category corresponds to one aspect of the reasons and motivations behind scholars' citation decision-making during academic writing. Using about 500,000 pairs of actual and randomly generated scholarly citations, a series of Random Forest-based classification experiments were conducted to quantitatively evaluate the correlation between each constructed citation feature and citation decisions made by scholars. Our experimental results indicate that citation proximity is the category most relevant to scholars' citation decision-making, followed by citation authority and citation inertia. However, big-name scholars whose h-indexes rank among the top 1% exhibit a unique pattern of citation behaviors-their citation decision-making correlates most closely with citation inertia, with the correlation nearly three times as strong as that of their ordinary counterparts. Hopefully, the empirical findings presented in this paper can bring us closer to characterizing and understanding the complex process of generating scholarly citations in academia.
    Type
    a
  3. Liu, X.: ¬The standardization of Chinese library classification (1993) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 5588) [ClassicSimilarity], result of:
              0.007030784 = score(doc=5588,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 5588, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5588)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The standardization of Chinese materials classification was first proposed in the late-1970s in China. In December 1980, the CCDST, the Chinese Library Association and the Chinese Society for Information Science proposed that the Chinese Library Classification system be adopted as national standard. This marked the beginning of the standardization of Chinese materials classification. Later on, there were many conferences and workshops held and four draft national standards were discussed, those for the Chinese Library Classification systems, the Materials Classification System, the Rules for Thesaurus and Subject Headings, and the rules for Materials Classifying Color Recognition. This article gives a brief review on the historical development of the standardization on Chinese Library Classification. It also discusses its effects on automation, networking and resources sharing and the feasibility of adopting Chinese Library Classification as a National Standard. In addition, the main content of the standardization of materials classification, use of the national standard classification system and variations under the standard system are covered in this article
    Type
    a
  4. Liu, X.: Generating metadata for cyberlearning resources through information retrieval and meta-search (2013) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 676) [ClassicSimilarity], result of:
              0.007030784 = score(doc=676,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 676, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=676)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The goal of this study was to propose novel cyberlearning resource-based scientific referential metadata for an assortment of publications and scientific topics, in order to enhance the learning experiences of students and scholars in a cyberinfrastructure-enabled learning environment. By using information retrieval and meta-search approaches, different types of referential metadata, such as related Wikipedia pages, data sets, source code, video lectures, presentation slides, and (online) tutorials for scientific publications and scientific topics will be automatically retrieved, associated, and ranked. In order to test our method of automatic cyberlearning referential metadata generation, we designed a user experiment to validate the quality of the metadata for each scientific keyword and publication and resource-ranking algorithm. Evaluation results show that the cyberlearning referential metadata retrieved via meta-search and statistical relevance ranking can help students better understand the essence of scientific keywords and publications.
    Type
    a
  5. Liu, X.; Kaza, S.; Zhang, P.; Chen, H.: Determining inventor status and its effect on knowledge diffusion : a study on nanotechnology literature from China, Russia, and India (2011) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 4468) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=4468,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 4468, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4468)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Liu, X.; Qin, J.: ¬An interactive metadata model for structural, descriptive, and referential representation of scholarly output (2014) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 1253) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=1253,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 1253, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1253)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The scientific metadata model proposed in this article encompasses both classical descriptive metadata such as those defined in the Dublin Core Metadata Element Set (DC) and the innovative structural and referential metadata properties that go beyond the classical model. Structural metadata capture the structural vocabulary in research publications; referential metadata include not only citations but also data about other types of scholarly output that is based on or related to the same publication. The article describes the structural, descriptive, and referential (SDR) elements of the metadata model and explains the underlying assumptions and justifications for each major component in the model. ScholarWiki, an experimental system developed as a proof of concept, was built over the wiki platform to allow user interaction with the metadata and the editing, deleting, and adding of metadata. By allowing and encouraging scholars (both as authors and as users) to participate in the knowledge and metadata editing and enhancing process, the larger community will benefit from more accurate and effective information retrieval. The ScholarWiki system utilizes machine-learning techniques that can automatically produce self-enhanced metadata by learning from the structural metadata that scholars contribute, which will add intelligence to enhance and update automatically the publication of metadata Wiki pages.
    Type
    a