Search (2 results, page 1 of 1)

  • × author_ss:"Lu, C."
  • × year_i:[2020 TO 2030}
  1. Wu, Z.; Lu, C.; Zhao, Y.; Xie, J.; Zou, D.; Su, X.: ¬The protection of user preference privacy in personalized information retrieval : challenges and overviews (2021) 0.00
    0.0016959244 = product of:
      0.0033918489 = sum of:
        0.0033918489 = product of:
          0.0067836978 = sum of:
            0.0067836978 = weight(_text_:a in 520) [ClassicSimilarity], result of:
              0.0067836978 = score(doc=520,freq=12.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.15602624 = fieldWeight in 520, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=520)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper reviews a large number of research achievements relevant to user privacy protection in an untrusted network environment, and then analyzes and evaluates their application limitations in personalized information retrieval, to establish the conditional constraints that an effective approach for user preference privacy protection in personalized information retrieval should meet, thus providing a basic reference for the solution of this problem. First, based on the basic framework of a personalized information retrieval platform, we establish a complete set of constraints for user preference privacy protection in terms of security, usability, efficiency, and accuracy. Then, we comprehensively review the technical features for all kinds of popular methods for user privacy protection, and analyze their application limitations in personalized information retrieval, according to the constraints of preference privacy protection. The results show that personalized information retrieval has higher requirements for users' privacy protection, i.e., it is required to comprehensively improve the security of users' preference privacy on the untrusted server-side, under the precondition of not changing the platform, algorithm, efficiency, and accuracy of personalized information retrieval. However, all kinds of existing privacy methods still cannot meet the above requirements. This paper is an important study attempt to the problem of user preference privacy protection of personalized information retrieval, which can provide a basic reference and direction for the further study of the problem.
    Type
    a
  2. Lu, C.; Zhang, Y.; Ahn, Y.-Y.; Ding, Y.; Zhang, C.; Ma, D.: Co-contributorship network and division of labor in individual scientific collaborations (2020) 0.00
    9.791424E-4 = product of:
      0.0019582848 = sum of:
        0.0019582848 = product of:
          0.0039165695 = sum of:
            0.0039165695 = weight(_text_:a in 5963) [ClassicSimilarity], result of:
              0.0039165695 = score(doc=5963,freq=4.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.090081796 = fieldWeight in 5963, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5963)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Collaborations are pervasive in current science. Collaborations have been studied and encouraged in many disciplines. However, little is known about how a team really functions from the detailed division of labor within. In this research, we investigate the patterns of scientific collaboration and division of labor within individual scholarly articles by analyzing their co-contributorship networks. Co-contributorship networks are constructed by performing the one-mode projection of the author-task bipartite networks obtained from 138,787 articles published in PLoS journals. Given an article, we define 3 types of contributors: Specialists, Team-players, and Versatiles. Specialists are those who contribute to all their tasks alone; team-players are those who contribute to every task with other collaborators; and versatiles are those who do both. We find that team-players are the majority and they tend to contribute to the 5 most common tasks as expected, such as "data analysis" and "performing experiments." The specialists and versatiles are more prevalent than expected by our designed 2 null models. Versatiles tend to be senior authors associated with funding and supervision. Specialists are associated with 2 contrasting roles: the supervising role as team leaders or marginal and specialized contributors.
    Type
    a

Authors