Search (2 results, page 1 of 1)

  • × author_ss:"Maaten, L. van den"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Maaten, L. van den; Hinton, G.: Visualizing non-metric similarities in multiple maps (2012) 0.00
    0.0023499418 = product of:
      0.0046998835 = sum of:
        0.0046998835 = product of:
          0.009399767 = sum of:
            0.009399767 = weight(_text_:a in 3884) [ClassicSimilarity], result of:
              0.009399767 = score(doc=3884,freq=16.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.2161963 = fieldWeight in 3884, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3884)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Techniques for multidimensional scaling visualize objects as points in a low-dimensional metric map. As a result, the visualizations are subject to the fundamental limitations of metric spaces. These limitations prevent multidimensional scaling from faithfully representing non-metric similarity data such as word associations or event co-occurrences. In particular, multidimensional scaling cannot faithfully represent intransitive pairwise similarities in a visualization, and it cannot faithfully visualize "central" objects. In this paper, we present an extension of a recently proposed multidimensional scaling technique called t-SNE. The extension aims to address the problems of traditional multidimensional scaling techniques when these techniques are used to visualize non-metric similarities. The new technique, called multiple maps t-SNE, alleviates these problems by constructing a collection of maps that reveal complementary structure in the similarity data. We apply multiple maps t-SNE to a large data set of word association data and to a data set of NIPS co-authorships, demonstrating its ability to successfully visualize non-metric similarities.
    Type
    a
  2. Maaten, L. van den: Accelerating t-SNE using Tree-Based Algorithms (2014) 0.00
    9.693015E-4 = product of:
      0.001938603 = sum of:
        0.001938603 = product of:
          0.003877206 = sum of:
            0.003877206 = weight(_text_:a in 3886) [ClassicSimilarity], result of:
              0.003877206 = score(doc=3886,freq=2.0), product of:
                0.043477926 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.037706986 = queryNorm
                0.089176424 = fieldWeight in 3886, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3886)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a