Search (1 results, page 1 of 1)

  • × author_ss:"Mao, J."
  • × theme_ss:"Automatisches Indexieren"
  • × type_ss:"el"
  1. Mao, J.; Xu, W.; Yang, Y.; Wang, J.; Yuille, A.L.: Explain images with multimodal recurrent neural networks (2014) 0.00
    0.001815726 = product of:
      0.025420163 = sum of:
        0.025420163 = weight(_text_:retrieval in 1557) [ClassicSimilarity], result of:
          0.025420163 = score(doc=1557,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.2835858 = fieldWeight in 1557, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1557)
      0.071428575 = coord(1/14)
    
    Abstract
    In this paper, we present a multimodal Recurrent Neural Network (m-RNN) model for generating novel sentence descriptions to explain the content of images. It directly models the probability distribution of generating a word given previous words and the image. Image descriptions are generated by sampling from this distribution. The model consists of two sub-networks: a deep recurrent neural network for sentences and a deep convolutional network for images. These two sub-networks interact with each other in a multimodal layer to form the whole m-RNN model. The effectiveness of our model is validated on three benchmark datasets (IAPR TC-12 [8], Flickr 8K [28], and Flickr 30K [13]). Our model outperforms the state-of-the-art generative method. In addition, the m-RNN model can be applied to retrieval tasks for retrieving images or sentences, and achieves significant performance improvement over the state-of-the-art methods which directly optimize the ranking objective function for retrieval.