Search (1 results, page 1 of 1)

  • × author_ss:"Meghabghab, G."
  • × theme_ss:"Retrievalalgorithmen"
  • × theme_ss:"Suchmaschinen"
  1. Meghabghab, G.: Google's Web page ranking applied to different topological Web graph structures (2001) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 6028) [ClassicSimilarity], result of:
          0.01213797 = score(doc=6028,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 6028, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6028)
      0.25 = coord(1/4)
    
    Abstract
    This research is part of the ongoing study to better understand web page ranking on the web. It looks at a web page as a graph structure or a web graph, and tries to classify different web graphs in the new coordinate space: (out-degree, in-degree). The out-degree coordinate od is defined as the number of outgoing web pages from a given web page. The in-degree id coordinate is the number of web pages that point to a given web page. In this new coordinate space a metric is built to classify how close or far different web graphs are. Google's web ranking algorithm (Brin & Page, 1998) on ranking web pages is applied in this new coordinate space. The results of the algorithm has been modified to fit different topological web graph structures. Also the algorithm was not successful in the case of general web graphs and new ranking web algorithms have to be considered. This study does not look at enhancing web ranking by adding any contextual information. It only considers web links as a source to web page ranking. The author believes that understanding the underlying web page as a graph will help design better ranking web algorithms, enhance retrieval and web performance, and recommends using graphs as a part of visual aid for browsing engine designers
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.9, S.736-747