Search (2 results, page 1 of 1)

  • × author_ss:"Meij, E."
  • × author_ss:"Rijke, M. de"
  • × year_i:[2010 TO 2020}
  1. He, J.; Meij, E.; Rijke, M. de: Result diversification based on query-specific cluster ranking (2011) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 4355) [ClassicSimilarity], result of:
              0.011717974 = score(doc=4355,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 4355, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Result diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking, in which diversification is restricted to documents belonging to clusters that potentially contain a high percentage of relevant documents. Empirical results show that the proposed framework improves the performance of several existing diversification methods. The framework also gives rise to a simple yet effective cluster-based approach to result diversification that selects documents from different clusters to be included in a ranked list in a round robin fashion. We describe a set of experiments aimed at thoroughly analyzing the behavior of the two main components of the proposed diversification framework, ranking and selecting clusters for diversification. Both components have a crucial impact on the overall performance of our framework, but ranking clusters plays a more important role than selecting clusters. We also examine properties that clusters should have in order for our diversification framework to be effective. Most relevant documents should be contained in a small number of high-quality clusters, while there should be no dominantly large clusters. Also, documents from these high-quality clusters should have a diverse content. These properties are strongly correlated with the overall performance of the proposed diversification framework.
    Type
    a
  2. Meij, E.; Trieschnigg, D.; Rijke, M. de; Kraaij, W.: Conceptual language models for domain-specific retrieval (2010) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 4238) [ClassicSimilarity], result of:
              0.009567685 = score(doc=4238,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 4238, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4238)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Over the years, various meta-languages have been used to manually enrich documents with conceptual knowledge of some kind. Examples include keyword assignment to citations or, more recently, tags to websites. In this paper we propose generative concept models as an extension to query modeling within the language modeling framework, which leverages these conceptual annotations to improve retrieval. By means of relevance feedback the original query is translated into a conceptual representation, which is subsequently used to update the query model. Extensive experimental work on five test collections in two domains shows that our approach gives significant improvements in terms of recall, initial precision and mean average precision with respect to a baseline without relevance feedback. On one test collection, it is also able to outperform a text-based pseudo-relevance feedback approach based on relevance models. On the other test collections it performs similarly to relevance models. Overall, conceptual language models have the added advantage of offering query and browsing suggestions in the form of conceptual annotations. In addition, the internal structure of the meta-language can be exploited to add related terms. Our contributions are threefold. First, an extensive study is conducted on how to effectively translate a textual query into a conceptual representation. Second, we propose a method for updating a textual query model using the concepts in conceptual representation. Finally, we provide an extensive analysis of when and how this conceptual feedback improves retrieval.
    Type
    a