Search (4 results, page 1 of 1)

  • × author_ss:"Meij, L. van der"
  1. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.02
    0.022779368 = product of:
      0.045558736 = sum of:
        0.045558736 = sum of:
          0.008118451 = weight(_text_:a in 2418) [ClassicSimilarity], result of:
            0.008118451 = score(doc=2418,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15287387 = fieldWeight in 2418, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2418)
          0.037440285 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
            0.037440285 = score(doc=2418,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 2418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2418)
      0.5 = coord(1/2)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
    Type
    a
  2. Wang, S.; Isaac, A.; Schlobach, S.; Meij, L. van der; Schopman, B.: Instance-based semantic interoperability in the cultural heritage (2012) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 125) [ClassicSimilarity], result of:
              0.00894975 = score(doc=125,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 125, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=125)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper gives a comprehensive overview over the problem of Semantic Interoperability in the Cultural Heritage domain, with a particular focus on solutions centered around extensional, i.e., instance-based, ontology matching methods. It presents three typical scenarios requiring interoperability, one with homogenous collections, one with heterogeneous collections, and one with multi-lingual collection. It discusses two different ways to evaluate potential alignments, one based on the application of re-indexing, one using a reference alignment. To these scenarios we apply extensional matching with different similarity measures which gives interesting insights. Finally, we firmly position our work in the Cultural Heritage context through an extensive discussion of the relevance for, and issues related to this specific field. The findings are as unspectacular as expected but nevertheless important: the provided methods can really improve interoperability in a number of important cases, but they are not universal solutions to all related problems. This paper will provide a solid foundation for any future work on Semantic Interoperability in the Cultural Heritage domain, in particular for anybody intending to apply extensional methods.
    Type
    a
  3. Isaac, A.; Wang, S.; Zinn, C.; Matthezing, H.; Meij, L. van der; Schlobach, S.: Evaluating thesaurus alignments for semantic interoperability in the library domain (2009) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 1650) [ClassicSimilarity], result of:
              0.007654148 = score(doc=1650,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 1650, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1650)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. Wang, S.; Isaac, A.; Schopman, B.; Schlobach, S.; Meij, L. van der: Matching multilingual subject vocabularies (2009) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 3035) [ClassicSimilarity], result of:
              0.005740611 = score(doc=3035,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 3035, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Most libraries and other cultural heritage institutions use controlled knowledge organisation systems, such as thesauri, to describe their collections. Unfortunately, as most of these institutions use different such systems, united access to heterogeneous collections is difficult. Things are even worse in an international context when concepts have labels in different languages. In order to overcome the multilingual interoperability problem between European Libraries, extensive work has been done to manually map concepts from different knowledge organisation systems, which is a tedious and expensive process. Within the TELplus project, we developed and evaluated methods to automatically discover these mappings, using different ontology matching techniques. In experiments on major French, English and German subject heading lists Rameau, LCSH and SWD, we show that we can automatically produce mappings of surprisingly good quality, even when using relatively naive translation and matching methods.