Search (5 results, page 1 of 1)

  • × author_ss:"Moya-Anegón, F."
  1. Faba-Pérez, C.; Guerrero-Bote, V.P.; Moya-Anegón, F.: "Sitation" distributions and Bradford's law in a closed Web space (2003) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 4447) [ClassicSimilarity], result of:
              0.010589487 = score(doc=4447,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 4447, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4447)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The study looks at how well the distribution of "sitations" (inlinks received by Web spaces) fits either a power law (of the Lotka type) or a bibliometric distribution for printed publications (of the Bradford type). The experimental sample examines the sitations found in a closed generic environment of thematically-related Web sites - the case of Extremadura (Spain). Two sets of data, varying several parameters, were used. The sitation distributions found were coherent with those described in previous experiments of this type, including in the exponent. The plots of accumulated clusters of sitations and targets, however, did not fit the typical Bradford distribution.
    Type
    a
  2. Quirin, A.; Cordón, O.; Guerrero-Bote, V.P.; Vargas-Quesada, B.; Moya-Anegón, F.: A quick MST-based algorithm to obtain Pathfinder networks (oo, n - 1) (2008) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2371) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2371,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2371, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2371)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Network scaling algorithms such as the Pathfinder algorithm are used to prune many different kinds of networks, including citation networks, random networks, and social networks. However, this algorithm suffers from run time problems for large networks and online processing due to its O(n**4) time complexity. In this article, we introduce a new alternative, the MST-Pathfinder algorithm, which will allow us to prune the original network to get its PFNET(oo, n - 1) in just O(n**2 · log n) time. The underlying idea comes from the fact that the union (superposition) of all the Minimum Spanning Trees extracted from a given network is equivalent to the PFNET resulting from the Pathfinder algorithm parameterized by a specific set of values (r = oo and q = n - 1), those usually considered in many different applications. Although this property is well-known in the literature, it seems that no algorithm based on it has been proposed, up to now, to decrease the high computational cost of the original Pathfinder algorithm. We also present a mathematical proof of the correctness of this new alternative and test its good efficiency in two different case studies: one dedicated to the post-processing of large random graphs, and the other one to a real world case in which medium networks obtained by a cocitation analysis of the scientific domains in different countries are pruned.
    Type
    a
  3. Quirin, A.; Cordón, O.; Santamaría, J.; Vargas-Quesada, B.; Moya-Anegón, F.: ¬A new variant of the Pathfinder algorithm to generate large visual science maps in cubic time (2008) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 2112) [ClassicSimilarity], result of:
              0.009374379 = score(doc=2112,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 2112, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2112)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the last few years, there is an increasing interest to generate visual representations of very large scientific domains. A methodology based on the combined use of ISI-JCR category cocitation and social networks analysis through the use of the Pathfinder algorithm has demonstrated its ability to achieve high quality, schematic visualizations for these kinds of domains. Now, the next step would be to generate these scientograms in an on-line fashion. To do so, there is a need to significantly decrease the run time of the latter pruning technique when working with category cocitation matrices of a large dimension like the ones handled in these large domains (Pathfinder has a time complexity order of O(n4), with n being the number of categories in the cocitation matrix, i.e., the number of nodes in the network). Although a previous improvement called Binary Pathfinder has already been proposed to speed up the original algorithm, its significant time complexity reduction is not enough for that aim. In this paper, we make use of a different shortest path computation from classical approaches in computer science graph theory to propose a new variant of the Pathfinder algorithm which allows us to reduce its time complexity in one order of magnitude, O(n3), and thus to significantly decrease the run time of the implementation when applied to large scientific domains considering the parameter q = n - 1. Besides, the new algorithm has a much simpler structure than the Binary Pathfinder as well as it saves a significant amount of memory with respect to the original Pathfinder by reducing the space complexity to the need of just storing two matrices. An experimental comparison will be developed using large networks from real-world domains to show the good performance of the new proposal.
    Type
    a
  4. Galvez, C.; Moya-Anegón, F.: Approximate personal name-matching through finite-state graphs (2007) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 614) [ClassicSimilarity], result of:
              0.006765375 = score(doc=614,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 614, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=614)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article shows how finite-state methods can be employed in a new and different task: the conflation of personal name variants in standard forms. In bibliographic databases and citation index systems, variant forms create problems of inaccuracy that affect information retrieval, the quality of information from databases, and the citation statistics used for the evaluation of scientists' work. A number of approximate string matching techniques have been developed to validate variant forms, based on similarity and equivalence relations. We classify the personal name variants as nonvalid and valid forms. In establishing an equivalence relation between valid variants and the standard form of its equivalence class, we defend the application of finite-state transducers. The process of variant identification requires the elaboration of: (a) binary matrices and (b) finite-state graphs. This procedure was tested on samples of author names from bibliographic records, selected from the Library and Information Science Abstracts and Science Citation Index Expanded databases. The evaluation involved calculating the measures of precision and recall, based on completeness and accuracy. The results demonstrate the usefulness of this approach, although it should be complemented with methods based on similarity relations for the recognition of spelling variants and misspellings.
    Type
    a
  5. Reyes-Barragán, M.J.; Guerrero-Bote, V.P.; Moya-Anegón, F.: Colaboración interregional e intraregional en España (1990-2002) (2007) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1109) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1109,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1109, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1109)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a