Search (8 results, page 1 of 1)

  • × author_ss:"Niemi, T."
  • × type_ss:"a"
  1. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.00
    0.0019651123 = product of:
      0.029476684 = sum of:
        0.029476684 = sum of:
          0.005919926 = weight(_text_:information in 2230) [ClassicSimilarity], result of:
            0.005919926 = score(doc=2230,freq=2.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.116372846 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
          0.023556758 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
            0.023556758 = score(doc=2230,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.23214069 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
      0.06666667 = coord(1/15)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  2. Näppilä, T.; Järvelin, K.; Niemi, T.: ¬A tool for data cube construction from structurally heterogeneous XML documents (2008) 0.00
    0.0017738222 = product of:
      0.026607333 = sum of:
        0.026607333 = sum of:
          0.0069766995 = weight(_text_:information in 1369) [ClassicSimilarity], result of:
            0.0069766995 = score(doc=1369,freq=4.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.13714671 = fieldWeight in 1369, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1369)
          0.019630633 = weight(_text_:22 in 1369) [ClassicSimilarity], result of:
            0.019630633 = score(doc=1369,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 1369, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1369)
      0.06666667 = coord(1/15)
    
    Abstract
    Data cubes for OLAP (On-Line Analytical Processing) often need to be constructed from data located in several distributed and autonomous information sources. Such a data integration process is challenging due to semantic, syntactic, and structural heterogeneity among the data. While XML (extensible markup language) is the de facto standard for data exchange, the three types of heterogeneity remain. Moreover, popular path-oriented XML query languages, such as XQuery, require the user to know in much detail the structure of the documents to be processed and are, thus, effectively impractical in many real-world data integration tasks. Several Lowest Common Ancestor (LCA)-based XML query evaluation strategies have recently been introduced to provide a more structure-independent way to access XML documents. We shall, however, show that this approach leads in the context of certain - not uncommon - types of XML documents to undesirable results. This article introduces a novel high-level data extraction primitive that utilizes the purpose-built Smallest Possible Context (SPC) query evaluation strategy. We demonstrate, through a system prototype for OLAP data cube construction and a sample application in informetrics, that our approach has real advantages in data integration.
    Date
    9. 2.2008 17:22:42
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.3, S.435-449
  3. Niemi, T.; Junkkari, M.; Järvelin, K.; Viita, S.: Advanced query language for manipulating complex entities (2004) 0.00
    4.604387E-4 = product of:
      0.00690658 = sum of:
        0.00690658 = product of:
          0.01381316 = sum of:
            0.01381316 = weight(_text_:information in 4218) [ClassicSimilarity], result of:
              0.01381316 = score(doc=4218,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.27153665 = fieldWeight in 4218, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4218)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Information processing and management. 40(2004) no.6, S.869-
  4. Järvelin, K.; Niemi, T.: Deductive information retrieval based on classifications (1993) 0.00
    3.9466174E-4 = product of:
      0.005919926 = sum of:
        0.005919926 = product of:
          0.011839852 = sum of:
            0.011839852 = weight(_text_:information in 2229) [ClassicSimilarity], result of:
              0.011839852 = score(doc=2229,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274569 = fieldWeight in 2229, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2229)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Modern fact databses contain abundant data classified through several classifications. Typically, users msut consult these classifications in separate manuals or files, thus making their effective use difficult. Contemporary database systems do little support deductive use of classifications. In this study we show how deductive data management techniques can be applied to the utilization of data value classifications. Computation of transitive class relationships is of primary importance here. We define a representation of classifications which supports transitive computation and present an operation-oriented deductive query language tailored for classification-based deductive information retrieval. The operations of this language are on the same abstraction level as relational algebra operations and can be integrated with these to form a powerful and flexible query language for deductive information retrieval. We define the integration of these operations and demonstrate the usefulness of the language in terms of several sample queries
    Source
    Journal of the American Society for Information Science. 44(1993) no.10, S.557-578
  5. Moilanen, K.; Niemi, T.; Näppilä, T.; Kuru, M.: ¬A visual XML dataspace approach for satisfying ad hoc information needs (2015) 0.00
    3.4178712E-4 = product of:
      0.0051268064 = sum of:
        0.0051268064 = product of:
          0.010253613 = sum of:
            0.010253613 = weight(_text_:information in 2269) [ClassicSimilarity], result of:
              0.010253613 = score(doc=2269,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.20156369 = fieldWeight in 2269, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2269)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Dataspace systems constitute a recent data management approach that supports better cooperation among autonomous and heterogeneous data sources with which the user is initially unfamiliar. A central idea is to gradually increase the user's knowledge about the contents, structures, and semantics of the data sources in the dataspace. Without this knowledge, the user is not able to make sophisticated queries. The dataspace systems proposed so far are usually application specific. In contrast, our idea in this paper is to develop an application-independent extensible markup language (XML) dataspace system with versatile facilities. Unlike the other proposed dataspace systems, we show that it is possible to build an interface based on conventional visual tools in terms of which the user can satisfy his or her sophisticated information needs. In our system, the user does not need to master programming techniques nor the XML syntax, which provides a good starting point for its declarative use.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.11, S.2304-2320
  6. Niemi, T.; Jämsen , J.: ¬A query language for discovering semantic associations, part I : approach and formal definition of query primitives (2007) 0.00
    3.2888478E-4 = product of:
      0.0049332716 = sum of:
        0.0049332716 = product of:
          0.009866543 = sum of:
            0.009866543 = weight(_text_:information in 591) [ClassicSimilarity], result of:
              0.009866543 = score(doc=591,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19395474 = fieldWeight in 591, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=591)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In contemporary query languages, the user is responsible for navigation among semantically related data. Because of the huge amount of data and the complex structural relationships among data in modern applications, it is unrealistic to suppose that the user could know completely the content and structure of the available information. There are several query languages whose purpose is to facilitate navigation in unknown structures of databases. However, the background assumption of these languages is that the user knows how data are related to each other semantically in the structure at hand. So far only little attention has been paid to how unknown semantic associations among available data can be discovered. We address this problem in this article. A semantic association between two entities can be constructed if a sequence of relationships expressed explicitly in a database can be found that connects these entities to each other. This sequence may contain several other entities through which the original entities are connected to each other indirectly. We introduce an expressive and declarative query language for discovering semantic associations. Our query language is able, for example, to discover semantic associations between entities for which only some of the characteristics are known. Further, it integrates the manipulation of semantic associations with the manipulation of documents that may contain information on entities in semantic associations.
    Content
    Part II: Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1686-1700.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1559-1568
  7. Niemi, T.; Jämsen, J.: ¬A query language for discovering semantic associations, part II : sample queries and query evaluation (2007) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 580) [ClassicSimilarity], result of:
              0.008544678 = score(doc=580,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 580, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=580)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    In our query language introduced in Part I (Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1559-1568) the user can formulate queries to find out (possibly complex) semantic relationships among entities. In this article we demonstrate the usage of our query language and discuss the new applications that it supports. We categorize several query types and give sample queries. The query types are categorized based on whether the entities specified in a query are known or unknown to the user in advance, and whether text information in documents is utilized. Natural language is used to represent the results of queries in order to facilitate correct interpretation by the user. We discuss briefly the issues related to the prototype implementation of the query language and show that an independent operation like Rho (Sheth et al., 2005; Anyanwu & Sheth, 2002, 2003), which presupposes entities of interest to be known in advance, is exceedingly inefficient in emulating the behavior of our query language. The discussion also covers potential problems, and challenges for future work.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1686-1700
  8. Niemi, T.; Hirvonen, L.; Järvelin, K.: Multidimensional data model and query language for informetrics (2003) 0.00
    1.9733087E-4 = product of:
      0.002959963 = sum of:
        0.002959963 = product of:
          0.005919926 = sum of:
            0.005919926 = weight(_text_:information in 1753) [ClassicSimilarity], result of:
              0.005919926 = score(doc=1753,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.116372846 = fieldWeight in 1753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1753)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.10, S.939-951