Search (7 results, page 1 of 1)

  • × author_ss:"Panzer, M."
  1. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.02
    0.024938494 = product of:
      0.049876988 = sum of:
        0.0047084456 = product of:
          0.018833783 = sum of:
            0.018833783 = weight(_text_:based in 4796) [ClassicSimilarity], result of:
              0.018833783 = score(doc=4796,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.13315678 = fieldWeight in 4796, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4796)
          0.25 = coord(1/4)
        0.04516854 = weight(_text_:term in 4796) [ClassicSimilarity], result of:
          0.04516854 = score(doc=4796,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.20621133 = fieldWeight in 4796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.5 = coord(2/4)
    
    Abstract
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  2. Panzer, M.: Designing identifiers for the DDC (2007) 0.01
    0.013163418 = product of:
      0.026326835 = sum of:
        0.0049940604 = product of:
          0.019976242 = sum of:
            0.019976242 = weight(_text_:based in 1752) [ClassicSimilarity], result of:
              0.019976242 = score(doc=1752,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.14123408 = fieldWeight in 1752, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1752)
          0.25 = coord(1/4)
        0.021332774 = product of:
          0.04266555 = sum of:
            0.04266555 = weight(_text_:22 in 1752) [ClassicSimilarity], result of:
              0.04266555 = score(doc=1752,freq=10.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.2595412 = fieldWeight in 1752, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1752)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    "Although the Dewey Decimal Classification is currently available on the web to subscribers as WebDewey and Abridged WebDewey in the OCLC Connexion service and in an XML version to licensees, OCLC does not provide any "web services" based on the DDC. By web services, we mean presentation of the DDC to other machines (not humans) for uses such as searching, browsing, classifying, mapping, harvesting, and alerting. In order to build web-accessible services based on the DDC, several elements have to be considered. One of these elements is the design of an appropriate Uniform Resource Identifier (URI) structure for Dewey. The design goals of mapping the entity model of the DDC into an identifier space can be summarized as follows: * Common locator for Dewey concepts and associated resources for use in web services and web applications * Use-case-driven, but not directly related to and outlasting a specific use case (persistency) * Retraceable path to a concept rather than an abstract identification, reusing a means of identification that is already present in the DDC and available in existing metadata. We have been working closely with our colleagues in the OCLC Office of Research (especially Andy Houghton as well as Eric Childress, Diane Vizine-Goetz, and Stu Weibel) on a preliminary identifier syntax. The basic identifier format we are currently exploring is: http://dewey.info/{aspect}/{object}/{locale}/{type}/{version}/{resource} where * {aspect} is the aspect associated with an {object}-the current value set of aspect contains "concept", "scheme", and "index"; additional ones are under exploration * {object} is a type of {aspect} * {locale} identifies a Dewey translation * {type} identifies a Dewey edition type and contains, at a minimum, the values "edn" for the full edition or "abr" for the abridged edition * {version} identifies a Dewey edition version * {resource} identifies a resource associated with an {object} in the context of {locale}, {type}, and {version}
    Some examples of identifiers for concepts follow: <http://dewey.info/concept/338.4/en/edn/22/> This identifier is used to retrieve or identify the 338.4 concept in the English-language version of Edition 22. <http://dewey.info/concept/338.4/de/edn/22/> This identifier is used to retrieve or identify the 338.4 concept in the German-language version of Edition 22. <http://dewey.info/concept/333.7-333.9/> This identifier is used to retrieve or identify the 333.7-333.9 concept across all editions and language versions. <http://dewey.info/concept/333.7-333.9/about.skos> This identifier is used to retrieve a SKOS representation of the 333.7-333.9 concept (using the "resource" element). There are several open issues at this preliminary stage of development: Use cases: URIs need to represent the range of statements or questions that could be submitted to a Dewey web service. Therefore, it seems that some general questions have to be answered first: What information does an agent have when coming to a Dewey web service? What kind of questions will such an agent ask? Placement of the {locale} component: It is still an open question if the {locale} component should be placed after the {version} component instead (<http://dewey.info/concept/338.4/edn/22/en>) to emphasize that the most important instantiation of a Dewey class is its edition, not its language version. From a services point of view, however, it could make more sense to keep the current arrangement, because users are more likely to come to the service with a present understanding of the language version they are seeking without knowing the specifics of a certain edition in which they are trying to find topics. Identification of other Dewey entities: The goal is to create a locator that does not answer all, but a lot of questions that could be asked about the DDC. Which entities are missing but should be surfaced for services or user agents? How will those services or agents interact with them? Should some entities be rendered in a different way as presented? For example, (how) should the DDC Summaries be retrievable? Would it be necessary to make the DDC Manual accessible through this identifier structure?"
  3. Panzer, M.: Dewey: how to make it work for you (2013) 0.01
    0.010893034 = product of:
      0.021786068 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 5797) [ClassicSimilarity], result of:
              0.023542227 = score(doc=5797,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 5797, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5797)
          0.25 = coord(1/4)
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 5797) [ClassicSimilarity], result of:
              0.031801023 = score(doc=5797,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 5797, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5797)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The article discusses various aspects of the Dewey Decimal Classification (DDC) system of classifying library books in 2013. Background is presented on some librarians' desire to stop using DDC and adopt a genre-based system of classification. It says librarians can use the DDC to deal with problems and issues related to library book classification. It highlights the benefits of using captions and relative index terms and semantic relationships in DDC.
    Source
    Knowledge quest. 42(2013) no.2, S.22-29
  4. Green, R.; Panzer, M.: Relations in the notational hierarchy of the Dewey Decimal Classification (2011) 0.01
    0.009880973 = product of:
      0.039523892 = sum of:
        0.039523892 = product of:
          0.079047784 = sum of:
            0.079047784 = weight(_text_:assessment in 4823) [ClassicSimilarity], result of:
              0.079047784 = score(doc=4823,freq=2.0), product of:
                0.25917634 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30499613 = fieldWeight in 4823, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4823)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    As part of a larger assessment of relationships in the Dewey Decimal Classification (DDC) system, this study investigates the semantic nature of relationships in the DDC notational hierarchy. The semantic relationship between each of a set of randomly selected classes and its parent class in the notational hierarchy is examined against a set of relationship types (specialization, class-instance, several flavours of whole-part).The analysis addresses the prevalence of specific relationship types, their lexical expression, difficulties encountered in assigning relationship types, compatibility of relationships found in the DDC with those found in other knowledge organization systems (KOS), and compatibility of relationships found in the DDC with those in a shared formalism like the Web Ontology Language (OWL). Since notational hierarchy is an organizational mechanism shared across most classification schemes and is often considered to provide an easy solution for ontological transformation of a classification system, the findings of the study are likely to generalize across classification schemes with respect to difficulties that might be encountered in such a transformation process.
  5. Panzer, M.: Cool URIs for the DDC : towards Web-scale accessibility of a large classification system (2008) 0.01
    0.006360204 = product of:
      0.025440816 = sum of:
        0.025440816 = product of:
          0.05088163 = sum of:
            0.05088163 = weight(_text_:22 in 2629) [ClassicSimilarity], result of:
              0.05088163 = score(doc=2629,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30952093 = fieldWeight in 2629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2629)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. Zeng, M.L.; Panzer, M.; Salaba, A.: Expressing classification schemes with OWL 2 Web Ontology Language : exploring issues and opportunities based on experiments using OWL 2 for three classification schemes 0.00
    0.0033293737 = product of:
      0.013317495 = sum of:
        0.013317495 = product of:
          0.05326998 = sum of:
            0.05326998 = weight(_text_:based in 3130) [ClassicSimilarity], result of:
              0.05326998 = score(doc=3130,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.37662423 = fieldWeight in 3130, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3130)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Based on the research on three general classification schemes, this paper discusses issues encountered when expressing classification schemes in SKOS and explores opportunities of resolving major issues using OWL 2 Web Ontology Language.
  7. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.00
    8.8283356E-4 = product of:
      0.0035313342 = sum of:
        0.0035313342 = product of:
          0.014125337 = sum of:
            0.014125337 = weight(_text_:based in 2127) [ClassicSimilarity], result of:
              0.014125337 = score(doc=2127,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.09986758 = fieldWeight in 2127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2127)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Content
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"