Search (1 results, page 1 of 1)

  • × author_ss:"Ponte, J.M."
  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Retrievalalgorithmen"
  1. Ponte, J.M.: Language models for relevance feedback (2000) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 35) [ClassicSimilarity], result of:
              0.010739701 = score(doc=35,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 35, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=35)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The language modeling approach to Information Retrieval (IR) is a conceptually simple model of IR originally developed by Ponte and Croft (1998). In this approach, the query is treated as a random event and documents are ranked according to the likelihood that the query would be generated via a language model estimated for each document. The intuition behind this approach is that users have a prototypical document in mind and will choose query terms accordingly. The intuitive appeal of this method is that inferences about the semantic content of documents do not need to be made resulting in a conceptually simple model. In this paper, techniques for relevance feedback and routing are derived from the language modeling approach in a straightforward manner and their effectiveness is demonstrated empirically. These experiments demonstrate further proof of concept for the language modeling approach to retrieval
    Type
    a