Search (6 results, page 1 of 1)

  • × author_ss:"Rafols, I."
  • × year_i:[2010 TO 2020}
  1. Kay, L.; Newman, N.; Youtie, J.; Porter, A.L.; Rafols, I.: Patent overlay mapping : visualizing technological distance (2014) 0.00
    3.149623E-4 = product of:
      0.0072441325 = sum of:
        0.0072441325 = product of:
          0.014488265 = sum of:
            0.014488265 = weight(_text_:international in 1543) [ClassicSimilarity], result of:
              0.014488265 = score(doc=1543,freq=2.0), product of:
                0.078619614 = queryWeight, product of:
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.023567878 = queryNorm
                0.18428308 = fieldWeight in 1543, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1543)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    This paper presents a new global patent map that represents all technological categories and a method to locate patent data of individual organizations and technological fields on the global map. This overlay map technique may support competitive intelligence and policy decision making. The global patent map is based on similarities in citing-to-cited relationships between categories of the International Patent Classification (IPC) of European Patent Office (EPO) patents from 2000 to 2006. This patent data set, extracted from the PATSTAT database, includes 760,000 patent records in 466 IPC-based categories. We compare the global patent maps derived from this categorization to related efforts of other global patent maps. The paper overlays the nanotechnology-related patenting activities of two companies and two different nanotechnology subfields on the global patent map. The exercise shows the potential of patent overlay maps to visualize technological areas and potentially support decision making. Furthermore, this study shows that IPC categories that are similar to one another based on citing-to-cited patterns (and thus close in the global patent map) are not necessarily in the same hierarchical IPC branch, thereby revealing new relationships between technologies that are classified as pertaining to different (and sometimes distant) subject areas in the IPC scheme.
  2. Hicks, D.; Wouters, P.; Waltman, L.; Rijcke, S. de; Rafols, I.: ¬The Leiden Manifesto for research metrics : 10 principles to guide research evaluation (2015) 0.00
    2.3911135E-4 = product of:
      0.005499561 = sum of:
        0.005499561 = product of:
          0.010999122 = sum of:
            0.010999122 = weight(_text_:1 in 1994) [ClassicSimilarity], result of:
              0.010999122 = score(doc=1994,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.18998542 = fieldWeight in 1994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1994)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Content
    Vgl.: http://www.nature.com/polopoly_fs/1.17351!/menu/main/topColumns/topLeftColumn/pdf/520429a.pdf. http://www.leidenmanifesto.org/uploads/4/1/6/0/41603901/leiden_manifesto_german__leidener_manifest.pdf. Video unter: https://vimeo.com/133683418.
  3. Leydesdorff, L.; Rafols, I.: Local emergence and global diffusion of research technologies : an exploration of patterns of network formation (2011) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 4445) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=4445,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 4445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4445)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Grasping the fruits of "emerging technologies" is an objective of many government priority programs in a knowledge-based and globalizing economy. We use the publication records (in the Science Citation Index) of two emerging technologies to study the mechanisms of diffusion in the case of two innovation trajectories: small interference RNA (siRNA) and nanocrystalline solar cells (NCSC). Methods for analyzing and visualizing geographical and cognitive diffusion are specified as indicators of different dynamics. Geographical diffusion is illustrated with overlays to Google Maps; cognitive diffusion is mapped using an overlay to a map based on the ISI subject categories. The evolving geographical networks show both preferential attachment and small-world characteristics. The strength of preferential attachment decreases over time while the network evolves into an oligopolistic control structure with small-world characteristics. The transition from disciplinary-oriented ("Mode 1") to transfer-oriented ("Mode 2") research is suggested as the crucial difference in explaining the different rates of diffusion between siRNA and NCSC.
  4. Liu, Y.; Rafols, I.; Rousseau, R.: ¬A framework for knowledge integration and diffusion (2012) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 297) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=297,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 297, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=297)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of documentation. 68(2012) no.1, S.31-44
  5. Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.: Strategic intelligence on emerging technologies : scientometric overlay mapping (2017) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 3322) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=3322,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 3322, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3322)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.214-233
  6. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 1131) [ClassicSimilarity], result of:
              0.007856515 = score(doc=1131,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 1131, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1131)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Using the option Analyze Results with the Web of Science, one can directly generate overlays onto global journal maps of science. The maps are based on the 10,000+ journals contained in the Journal Citation Reports (JCR) of the Science and Social Sciences Citation Indices (2011). The disciplinary diversity of the retrieval is measured in terms of Rao-Stirling's "quadratic entropy" (Izsák & Papp, 1995). Since this indicator of interdisciplinarity is normalized between 0 and 1, interdisciplinarity can be compared among document sets and across years, cited or citing. The colors used for the overlays are based on Blondel, Guillaume, Lambiotte, and Lefebvre's (2008) community-finding algorithms operating on the relations among journals included in the JCR. The results can be exported from VOSViewer with different options such as proportional labels, heat maps, or cluster density maps. The maps can also be web-started or animated (e.g., using PowerPoint). The "citing" dimension of the aggregated journal-journal citation matrix was found to provide a more comprehensive description than the matrix based on the cited archive. The relations between local and global maps and their different functions in studying the sciences in terms of journal literatures are further discussed: Local and global maps are based on different assumptions and can be expected to serve different purposes for the explanation.