Search (3 results, page 1 of 1)

  • × author_ss:"Rafols, I."
  1. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.00
    0.0034615172 = product of:
      0.010384551 = sum of:
        0.010384551 = product of:
          0.031153653 = sum of:
            0.031153653 = weight(_text_:online in 3987) [ClassicSimilarity], result of:
              0.031153653 = score(doc=3987,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20118743 = fieldWeight in 3987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3987)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    We present a novel approach to visually locate bodies of research within the sciences, both at each moment of time and dynamically. This article describes how this approach fits with other efforts to locally and globally map scientific outputs. We then show how these science overlay maps help benchmarking, explore collaborations, and track temporal changes, using examples of universities, corporations, funding agencies, and research topics. We address their conditions of application and discuss advantages, downsides, and limitations. Overlay maps especially help investigate the increasing number of scientific developments and organizations that do not fit within traditional disciplinary categories. We make these tools available online to enable researchers to explore the ongoing sociocognitive transformations of science and technology systems.
  2. Leydesdorff, L.; Rafols, I.: ¬A global map of science based on the ISI subject categories (2009) 0.00
    0.0028845975 = product of:
      0.008653793 = sum of:
        0.008653793 = product of:
          0.025961377 = sum of:
            0.025961377 = weight(_text_:online in 2713) [ClassicSimilarity], result of:
              0.025961377 = score(doc=2713,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16765618 = fieldWeight in 2713, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2713)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The decomposition of scientific literature into disciplinary and subdisciplinary structures is one of the core goals of scientometrics. How can we achieve a good decomposition? The ISI subject categories classify journals included in the Science Citation Index (SCI). The aggregated journal-journal citation matrix contained in the Journal Citation Reports can be aggregated on the basis of these categories. This leads to an asymmetrical matrix (citing versus cited) that is much more densely populated than the underlying matrix at the journal level. Exploratory factor analysis of the matrix of subject categories suggests a 14-factor solution. This solution could be interpreted as the disciplinary structure of science. The nested maps of science (corresponding to 14 factors, 172 categories, and 6,164 journals) are online at http://www.leydesdorff.net/map06. Presumably, inaccuracies in the attribution of journals to the ISI subject categories average out so that the factor analysis reveals the main structures. The mapping of science could, therefore, be comprehensive and reliable on a large scale albeit imprecise in terms of the attribution of journals to the ISI subject categories.
  3. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.00
    0.0028656456 = product of:
      0.008596936 = sum of:
        0.008596936 = product of:
          0.025790809 = sum of:
            0.025790809 = weight(_text_:retrieval in 1131) [ClassicSimilarity], result of:
              0.025790809 = score(doc=1131,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16710453 = fieldWeight in 1131, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1131)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Using the option Analyze Results with the Web of Science, one can directly generate overlays onto global journal maps of science. The maps are based on the 10,000+ journals contained in the Journal Citation Reports (JCR) of the Science and Social Sciences Citation Indices (2011). The disciplinary diversity of the retrieval is measured in terms of Rao-Stirling's "quadratic entropy" (Izsák & Papp, 1995). Since this indicator of interdisciplinarity is normalized between 0 and 1, interdisciplinarity can be compared among document sets and across years, cited or citing. The colors used for the overlays are based on Blondel, Guillaume, Lambiotte, and Lefebvre's (2008) community-finding algorithms operating on the relations among journals included in the JCR. The results can be exported from VOSViewer with different options such as proportional labels, heat maps, or cluster density maps. The maps can also be web-started or animated (e.g., using PowerPoint). The "citing" dimension of the aggregated journal-journal citation matrix was found to provide a more comprehensive description than the matrix based on the cited archive. The relations between local and global maps and their different functions in studying the sciences in terms of journal literatures are further discussed: Local and global maps are based on different assumptions and can be expected to serve different purposes for the explanation.