Search (2 results, page 1 of 1)

  • × author_ss:"Ren, Y."
  • × year_i:[2010 TO 2020}
  1. Ren, Y.; Tomko, M.; Salim, F.D.; Ong, K.; Sanderson, M.: Analyzing Web behavior in indoor retail spaces (2017) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 3318) [ClassicSimilarity], result of:
          0.008924231 = score(doc=3318,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 3318, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3318)
      0.16666667 = coord(1/6)
    
    Abstract
    We analyze 18- million rows of Wi-Fi access logs collected over a 1-year period from over 120,000 anonymized users at an inner city shopping mall. The anonymized data set gathered from an opt-in system provides users' approximate physical location as well as web browsing and some search history. Such data provide a unique opportunity to analyze the interaction between people's behavior in physical retail spaces and their web behavior, serving as a proxy to their information needs. We found that (a) there is a weekly periodicity in users' visits to the mall; (b) people tend to visit similar mall locations and web content during their repeated visits to the mall; (c) around 60% of registered Wi-Fi users actively browse the web, and around 10% of them use Wi-Fi for accessing web search engines; (d) people are likely to spend a relatively constant amount of time browsing the web while the duration of their visit may vary; (e) the physical spatial context has a small, but significant, influence on the web content that indoor users browse; and (f) accompanying users tend to access resources from the same web domains.
  2. Xu, G.; Cao, Y.; Ren, Y.; Li, X.; Feng, Z.: Network security situation awareness based on semantic ontology and user-defined rules for Internet of Things (2017) 0.00
    0.0012881019 = product of:
      0.007728611 = sum of:
        0.007728611 = weight(_text_:in in 306) [ClassicSimilarity], result of:
          0.007728611 = score(doc=306,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 306, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=306)
      0.16666667 = coord(1/6)
    
    Abstract
    Internet of Things (IoT) brings the third development wave of the global information industry which makes users, network and perception devices cooperate more closely. However, if IoT has security problems, it may cause a variety of damage and even threaten human lives and properties. To improve the abilities of monitoring, providing emergency response and predicting the development trend of IoT security, a new paradigm called network security situation awareness (NSSA) is proposed. However, it is limited by its ability to mine and evaluate security situation elements from multi-source heterogeneous network security information. To solve this problem, this paper proposes an IoT network security situation awareness model using situation reasoning method based on semantic ontology and user-defined rules. Ontology technology can provide a unified and formalized description to solve the problem of semantic heterogeneity in the IoT security domain. In this paper, four key sub-domains are proposed to reflect an IoT security situation: context, attack, vulnerability and network flow. Further, user-defined rules can compensate for the limited description ability of ontology, and hence can enhance the reasoning ability of our proposed ontology model. The examples in real IoT scenarios show that the ability of the network security situation awareness that adopts our situation reasoning method is more comprehensive and more powerful reasoning abilities than the traditional NSSA methods. [http://ieeexplore.ieee.org/abstract/document/7999187/]

Authors

Types