Search (6 results, page 1 of 1)

  • × author_ss:"Rotolo, D."
  1. Leydesdorff, L.; Rotolo, D.; Rafols, I.: Bibliometric perspectives on medical innovation using the medical subject headings of PubMed (2012) 0.00
    0.0022338415 = product of:
      0.004467683 = sum of:
        0.004467683 = product of:
          0.008935366 = sum of:
            0.008935366 = weight(_text_:a in 494) [ClassicSimilarity], result of:
              0.008935366 = score(doc=494,freq=12.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.18723148 = fieldWeight in 494, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=494)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multiple perspectives on the nonlinear processes of medical innovations can be distinguished and combined using the Medical Subject Headings (MeSH) of the MEDLINE database. Focusing on three main branches-"diseases," "drugs and chemicals," and "techniques and equipment"-we use base maps and overlay techniques to investigate the translations and interactions and thus to gain a bibliometric perspective on the dynamics of medical innovations. To this end, we first analyze the MEDLINE database, the MeSH index tree, and the various options for a static mapping from different perspectives and at different levels of aggregation. Following a specific innovation (RNA interference) over time, the notion of a trajectory which leaves a signature in the database is elaborated. Can the detailed index terms describing the dynamics of research be used to predict the diffusion dynamics of research results? Possibilities are specified for further integration between the MEDLINE database on one hand, and the Science Citation Index and Scopus (containing citation information) on the other.
    Type
    a
  2. Rotolo, D.; Leydesdorff, L.: Matching Medline/PubMed data with Web of Science: A routine in R language (2015) 0.00
    0.001823924 = product of:
      0.003647848 = sum of:
        0.003647848 = product of:
          0.007295696 = sum of:
            0.007295696 = weight(_text_:a in 2224) [ClassicSimilarity], result of:
              0.007295696 = score(doc=2224,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.15287387 = fieldWeight in 2224, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2224)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a novel routine, namely medlineR, based on the R language, that allows the user to match data from Medline/PubMed with records indexed in the ISI Web of Science (WoS) database. The matching allows exploiting the rich and controlled vocabulary of medical subject headings (MeSH) of Medline/PubMed with additional fields of WoS. The integration provides data (e.g., citation data, list of cited reference, list of the addresses of authors' host organizations, WoS subject categories) to perform a variety of scientometric analyses. This brief communication describes medlineR, the method on which it relies, and the steps the user should follow to perform the matching across the two databases. To demonstrate the differences from Leydesdorff and Opthof (Journal of the American Society for Information Science and Technology, 64(5), 1076-1080), we conclude this artcle by testing the routine on the MeSH category "Burgada syndrome."
    Type
    a
  3. Leydesdorff, L.; Heimeriks, G.; Rotolo, D.: Journal portfolio analysis for countries, cities, and organizations : maps and comparisons (2016) 0.00
    0.001823924 = product of:
      0.003647848 = sum of:
        0.003647848 = product of:
          0.007295696 = sum of:
            0.007295696 = weight(_text_:a in 2781) [ClassicSimilarity], result of:
              0.007295696 = score(doc=2781,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.15287387 = fieldWeight in 2781, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using Web of Science data, portfolio analysis in terms of journal coverage can be projected onto a base map for units of analysis such as countries, cities, universities, and firms. The units of analysis under study can be compared statistically across the 10,000+ journals. The interdisciplinarity of the portfolios is measured using Rao-Stirling diversity or Zhang et?al.'s improved measure 2D3. At the country level we find regional differentiation (e.g., Latin American or Asian countries), but also a major divide between advanced and less-developed countries. Israel and Israeli cities outperform other nations and cities in terms of diversity. Universities appear to be specifically related to firms when a number of these units are exploratively compared. The instrument is relatively simple and straightforward, and one can generalize the application to any document set retrieved from the Web of Science (WoS). Further instruction is provided online at http://www.leydesdorff.net/portfolio.
    Type
    a
  4. Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.: Strategic intelligence on emerging technologies : scientometric overlay mapping (2017) 0.00
    0.0015795645 = product of:
      0.003159129 = sum of:
        0.003159129 = product of:
          0.006318258 = sum of:
            0.006318258 = weight(_text_:a in 3322) [ClassicSimilarity], result of:
              0.006318258 = score(doc=3322,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.13239266 = fieldWeight in 3322, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3322)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper examines the use of scientometric overlay mapping as a tool of "strategic intelligence" to aid the governing of emerging technologies. We develop an integrative synthesis of different overlay mapping techniques and associated perspectives on technological emergence across geographical, social, and cognitive spaces. To do so, we longitudinally analyze (with publication and patent data) three case studies of emerging technologies in the medical domain. These are RNA interference (RNAi), human papillomavirus (HPV) testing technologies for cervical cancer, and thiopurine methyltransferase (TPMT) genetic testing. Given the flexibility (i.e., adaptability to different sources of data) and granularity (i.e., applicability across multiple levels of data aggregation) of overlay mapping techniques, we argue that these techniques can favor the integration and comparison of results from different contexts and cases, thus potentially functioning as a platform for "distributed" strategic intelligence for analysts and decision makers.
    Type
    a
  5. Grassano, N.; Rotolo, D.; Hutton, J.; Lang, F.; Hopkins, M.M.: Funding data from publication acknowledgments : coverage, uses, and limitations (2017) 0.00
    0.0013163039 = product of:
      0.0026326077 = sum of:
        0.0026326077 = product of:
          0.0052652154 = sum of:
            0.0052652154 = weight(_text_:a in 3536) [ClassicSimilarity], result of:
              0.0052652154 = score(doc=3536,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.11032722 = fieldWeight in 3536, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3536)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article contributes to the development of methods for analysing research funding systems by exploring the robustness and comparability of emerging approaches to generate funding landscapes useful for policy making. We use a novel data set of manually extracted and coded data on the funding acknowledgements of 7,510 publications representing UK cancer research in the year 2011 and compare these "reference data" with funding data provided by Web of Science (WoS) and MEDLINE/PubMed. Findings show high recall (around 93%) of WoS funding data. By contrast, MEDLINE/PubMed data retrieved less than half of the UK cancer publications acknowledging at least one funder. Conversely, both databases have high precision (+90%): That is, few cases of publications with no acknowledgment to funders are identified as having funding data. Nonetheless, funders acknowledged in UK cancer publications were not correctly listed by MEDLINE/PubMed and WoS in around 75% and 32% of the cases, respectively. Reference data on the UK cancer research funding system are used as a case study to demonstrate the utility of funding data for strategic intelligence applications (e.g., mapping of funding landscape and co-funding activity, comparison of funders' research portfolios).
    Type
    a
  6. Rotolo, D.; Hopkins, M.; Grassano, N.: Do funding sources complement or substitute? : examining the impact of cancer research publications (2023) 0.00
    0.0013163039 = product of:
      0.0026326077 = sum of:
        0.0026326077 = product of:
          0.0052652154 = sum of:
            0.0052652154 = weight(_text_:a in 842) [ClassicSimilarity], result of:
              0.0052652154 = score(doc=842,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.11032722 = fieldWeight in 842, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=842)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Academic research often draws on multiple funding sources. This paper investigates whether complementarity or substitutability emerges when different types of funding are used. Scholars have examined this phenomenon at the university and scientist levels, but not at the publication level. This gap is significant since acknowledgement sections in scientific papers indicate publications are often supported by multiple funding sources. To address this gap, we examine the extent to which different funding types are jointly used in publications, and to what extent certain combinations of funding are associated with higher academic impact (citation count). We focus on three types of funding accessed by UK-based researchers: national, international, and industry. The analysis builds on data extracted from all UK cancer-related publications in 2011, thus providing a 10-year citation window. Findings indicate that, although there is complementarity between national and international funding in terms of their co-occurrence (where these are acknowledged in the same publication), when we evaluate funding complementarity in relation to academic impact (we employ the supermodularity framework), we found no evidence of such a relationship. Rather, our results suggest substitutability between national and international funding. We also observe substitutability between international and industry funding.
    Type
    a