Search (43 results, page 2 of 3)

  • × author_ss:"Rousseau, R."
  • × theme_ss:"Informetrie"
  1. Rousseau, R.: Journal evaluation : technical and practical issues (2002) 0.00
    0.0017239923 = product of:
      0.008619961 = sum of:
        0.008619961 = weight(_text_:a in 816) [ClassicSimilarity], result of:
          0.008619961 = score(doc=816,freq=16.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.18016359 = fieldWeight in 816, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=816)
      0.2 = coord(1/5)
    
    Abstract
    This essay provides an overview of journal evaluation indicators. It highlights the strengths and weaknesses of different indicators, together with their range of applicability. The definition of a "quality journal," different notions of impact factors, the meaning of ranking journals, and possible biases in citation databases are also discussed. Attention is given to using the journal impact in evaluation studies. The quality of a journal is a multifaceted notion. Journals can be evaluated for different purposes, and hence the results of such evaluation exercises can be quite different depending on the indicator(s) used. The impact factor, in one of its versions, is probably the most used indicator when it comes to gauging the visibility of a journal on the research front. Generalized impact factors, over periods longer than the traditional two years, are better indicators for the long-term value of a journal. As with all evaluation studies, care must be exercised when considering journal impact factors as a quality indicator. It seems best to use a whole battery of indicators (including several impact factors) and to change this group of indicators depending on the purpose of the evaluation study. Nowadays it goes without saying that special attention is paid to e-journals and specific indicators for this type of journal.
    Type
    a
  2. Rousseau, R.: On Egghe's construction of Lorenz curves (2007) 0.00
    0.0017239923 = product of:
      0.008619961 = sum of:
        0.008619961 = weight(_text_:a in 521) [ClassicSimilarity], result of:
          0.008619961 = score(doc=521,freq=4.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.18016359 = fieldWeight in 521, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=521)
      0.2 = coord(1/5)
    
    Abstract
    Contrary to Burrell's statements, Egghe's theory of continuous concentration does include the construction of a standard Lorenz curve.
    Type
    a
  3. Rousseau, S.; Rousseau, R.: Metric-wiseness (2015) 0.00
    0.0017066653 = product of:
      0.008533326 = sum of:
        0.008533326 = weight(_text_:a in 6069) [ClassicSimilarity], result of:
          0.008533326 = score(doc=6069,freq=2.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.17835285 = fieldWeight in 6069, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=6069)
      0.2 = coord(1/5)
    
    Type
    a
  4. Rousseau, R.: Robert Fairthorne and the empirical power laws (2005) 0.00
    0.0017066653 = product of:
      0.008533326 = sum of:
        0.008533326 = weight(_text_:a in 4398) [ClassicSimilarity], result of:
          0.008533326 = score(doc=4398,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.17835285 = fieldWeight in 4398, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4398)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - Aims to review Fairthorne's classic article "Empirical hyperbolic distributions (Bradford-Zipf-Mandelbrot) for bibliometric description and prediction" (Journal of Documentation, Vol. 25, pp. 319-343, 1969), as part of a series marking the Journal of Documentation's 60th anniversary. Design/methodology/approach - Analysis of article content, qualitative evaluation of its subsequent impact, citation analysis, and diffusion analysis. Findings - The content, further developments and influence on the field of informetrics of this landmark paper are explained. Originality/value - A review is given of the contents of Fairthorne's original article and its influence on the field of informetrics. Its transdisciplinary reception is measured through a diffusion analysis.
    Type
    a
  5. Egghe, L.; Rousseau, R.; Rousseau, S.: TOP-curves (2007) 0.00
    0.0017066653 = product of:
      0.008533326 = sum of:
        0.008533326 = weight(_text_:a in 50) [ClassicSimilarity], result of:
          0.008533326 = score(doc=50,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.17835285 = fieldWeight in 50, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=50)
      0.2 = coord(1/5)
    
    Abstract
    Several characteristics of classical Lorenz curves make them unsuitable for the study of a group of topperformers. TOP-curves, defined as a kind of mirror image of TIP-curves used in poverty studies, are shown to possess the properties necessary for adequate empirical ranking of various data arrays, based on the properties of the highest performers (i.e., the core). TOP-curves and essential TOP-curves, also introduced in this article, simultaneously represent the incidence, intensity, and inequality among the top. It is shown that TOPdominance partial order, introduced in this article, is stronger than Lorenz dominance order. In this way, this article contributes to the study of cores, a central issue in applied informetrics.
    Type
    a
  6. Liu, Y.; Rousseau, R.: Towards a representation of diffusion and interaction of scientific ideas : the case of fiber optics communication (2012) 0.00
    0.0017066653 = product of:
      0.008533326 = sum of:
        0.008533326 = weight(_text_:a in 2723) [ClassicSimilarity], result of:
          0.008533326 = score(doc=2723,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.17835285 = fieldWeight in 2723, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2723)
      0.2 = coord(1/5)
    
    Abstract
    The research question studied in this contribution is how to find an adequate representation to describe the diffusion of scientific ideas over time. We claim that citation data, at least of articles that act as concept symbols, can be considered to contain this information. As a case study we show how the founding article by Nobel Prize winner Kao illustrates the evolution of the field of fiber optics communication. We use a continuous description of discrete citation data in order to accentuate turning points and breakthroughs in the history of this field. Applying the principles explained in this contribution informetrics may reveal the trajectories along which science is developing.
    Type
    a
  7. Shi, D.; Rousseau, R.; Yang, L.; Li, J.: ¬A journal's impact factor is influenced by changes in publication delays of citing journals (2017) 0.00
    0.0016355228 = product of:
      0.008177614 = sum of:
        0.008177614 = weight(_text_:a in 3441) [ClassicSimilarity], result of:
          0.008177614 = score(doc=3441,freq=10.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.1709182 = fieldWeight in 3441, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3441)
      0.2 = coord(1/5)
    
    Abstract
    In this article we describe another problem with journal impact factors by showing that one journal's impact factor is dependent on other journals' publication delays. The proposed theoretical model predicts a monotonically decreasing function of the impact factor as a function of publication delay, on condition that the citation curve of the journal is monotone increasing during the publication window used in the calculation of the journal impact factor; otherwise, this function has a reversed U shape. Our findings based on simulations are verified by examining three journals in the information sciences: the Journal of Informetrics, Scientometrics, and the Journal of the Association for Information Science and Technology.
    Type
    a
  8. Frandsen, T.F.; Rousseau, R.; Rowlands, I.: Diffusion factors (2006) 0.00
    0.0016126471 = product of:
      0.008063235 = sum of:
        0.008063235 = weight(_text_:a in 5587) [ClassicSimilarity], result of:
          0.008063235 = score(doc=5587,freq=14.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.1685276 = fieldWeight in 5587, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - The purpose of this paper is to clarify earlier work on journal diffusion metrics. Classical journal indicators such as the Garfield impact factor do not measure the breadth of influence across the literature of a particular journal title. As a new approach to measuring research influence, the study complements these existing metrics with a series of formally described diffusion factors. Design/methodology/approach - Using a publication-citation matrix as an organising construct, the paper develops formal descriptions of two forms of diffusion metric: "relative diffusion factors" and "journal diffusion factors" in both their synchronous and diachronous forms. It also provides worked examples for selected library and information science and economics journals, plus a sample of health information papers to illustrate their construction and use. Findings - Diffusion factors capture different aspects of the citation reception process than existing bibliometric measures. The paper shows that diffusion factors can be applied at the whole journal level or for sets of articles and that they provide a richer evidence base for citation analyses than traditional measures alone. Research limitations/implications - The focus of this paper is on clarifying the concepts underlying diffusion factors and there is unlimited scope for further work to apply these metrics to much larger and more comprehensive data sets than has been attempted here. Practical implications - These new tools extend the range of tools available for bibliometric, and possibly webometric, analysis. Diffusion factors might find particular application in studies where the research questions focus on the dynamic aspects of innovation and knowledge transfer. Originality/value - This paper will be of interest to those with theoretical interests in informetric distributions as well as those interested in science policy and innovation studies.
    Type
    a
  9. Yan, S.; Rousseau, R.; Huang, S.: Contributions of chinese authors in PLOS ONE (2016) 0.00
    0.0014780156 = product of:
      0.0073900777 = sum of:
        0.0073900777 = weight(_text_:a in 2765) [ClassicSimilarity], result of:
          0.0073900777 = score(doc=2765,freq=6.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.1544581 = fieldWeight in 2765, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2765)
      0.2 = coord(1/5)
    
    Abstract
    Beginning with a short review of Public Library of Science (PLOS) journals, we focus on PLOS ONE and more specifically the contributions of Chinese authors to this journal. It is shown that their contribution is growing exponentially. In 2013 almost one fifth of all publications in this journal had at least one Chinese author. The average number of citations per publication is approximately the same for articles with a Chinese author and for articles without any Chinese coauthor. Using the odds-ratio, we could not find arguments that Chinese authors in PLOS ONE excessively cite other Chinese contributions.
    Type
    a
  10. Egghe, L.; Rousseau, R.: Aging, obsolescence, impact, growth, and utilization : definitions and relations (2000) 0.00
    0.001462856 = product of:
      0.0073142797 = sum of:
        0.0073142797 = weight(_text_:a in 5154) [ClassicSimilarity], result of:
          0.0073142797 = score(doc=5154,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.15287387 = fieldWeight in 5154, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5154)
      0.2 = coord(1/5)
    
    Abstract
    The notions aging, obsolescence, impact, growth, utilization, and their relations are studied. It is shown how to correct an observed citation distribution for growth, once the growth distribution is known. The relation of this correction procedure with the calculation of impact measures is explained. More interestingly, we have shown how the influence of growth on aging can be studied over a complete period as a whole. Here, the difference between the so-called average and global aging distributions is the main factor. Our main result is that growth can influence aging but that it does not cause aging. A short overview of some classical articles on this topic is given. Results of these earlier works are placed in the framework set up in this article
    Type
    a
  11. Impe, S. van; Rousseau, R.: Web-to-print citations and the humanities (2006) 0.00
    0.001462856 = product of:
      0.0073142797 = sum of:
        0.0073142797 = weight(_text_:a in 82) [ClassicSimilarity], result of:
          0.0073142797 = score(doc=82,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.15287387 = fieldWeight in 82, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=82)
      0.2 = coord(1/5)
    
    Abstract
    References to printed documents made on the web are called web-to-print references. These printed documents then in turn receive web-to-print citations. Webto-print citations and web-to-print references are the topic of this article, in which we study the online impact of printed sources. Web-to-print citations are discussed from a structural point of view and a small-scale experiment related to web-to-print citations for local history journals is performed. The main research question in setting up this experiment concerns the possibility of using web-to-print citations as a substitute for classical citation indexes by gauging the importance, visibility and impact of journals in the humanities. Results show the importance of web bibliographies in the field, but, at least for what concerns the journals and the period studied here, the amount of received web-to-print citations is too small to draw general conclusions.
    Type
    a
  12. Zhang, L.; Rousseau, R.; Glänzel, W.: Document-type country profiles (2011) 0.00
    0.0013791939 = product of:
      0.006895969 = sum of:
        0.006895969 = weight(_text_:a in 4487) [ClassicSimilarity], result of:
          0.006895969 = score(doc=4487,freq=4.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.14413087 = fieldWeight in 4487, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4487)
      0.2 = coord(1/5)
    
    Abstract
    A bibliometric method for analyzing and visualizing national research profiles is adapted to describe national preferences for publishing particular document types. Similarities in national profiles and national peculiarities are discussed based on the publication output of the 26 most active countries indexed in the Web of Science annual volume 2007.
    Type
    a
  13. Liu, Y.; Rousseau, R.: Citation analysis and the development of science : a case study using articles by some Nobel prize winners (2014) 0.00
    0.0013791939 = product of:
      0.006895969 = sum of:
        0.006895969 = weight(_text_:a in 1197) [ClassicSimilarity], result of:
          0.006895969 = score(doc=1197,freq=4.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.14413087 = fieldWeight in 1197, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1197)
      0.2 = coord(1/5)
    
    Type
    a
  14. Liu, Y.; Rousseau, R.: Knowledge diffusion through publications and citations : a case study using ESI-fields as unit of diffusion (2010) 0.00
    0.0013629356 = product of:
      0.006814678 = sum of:
        0.006814678 = weight(_text_:a in 3334) [ClassicSimilarity], result of:
          0.006814678 = score(doc=3334,freq=10.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.14243183 = fieldWeight in 3334, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3334)
      0.2 = coord(1/5)
    
    Abstract
    Two forms of diffusion are studied: diffusion by publications, originating from the fact that a group publishes in different fields; and diffusion by citations, originating from the fact that the group's publications are cited in different fields. The first form of diffusion originates from an internal mechanism by which the group itself expands its own borders. The second form is partly driven by an external mechanism, in the sense that other fields use or become interested in the original group's expertise, and partly by the group's internal dynamism, in the sense that their articles, being published in more and more fields, have the potential to be applied in these other fields. In this contribution, we focus on basic counting measures as measures of diffusion. We introduce the notions of field diffusion breadth, defined as the number of for Essential Science Indicators (ESI) fields in which a set of articles is cited, and field diffusion intensity, defined as the number of citing articles in one particular ESI field. Combined effects of publications and citations can be measured by the Gini evenness measure. Our approach is illustrated by a study of mathematics at Tongji University (Shanghai, China).
    Type
    a
  15. Liu, Y.; Rousseau, R.: Interestingness and the essence of citation : Thomas Reid and bibliographic description (2013) 0.00
    0.0012668705 = product of:
      0.0063343523 = sum of:
        0.0063343523 = weight(_text_:a in 1764) [ClassicSimilarity], result of:
          0.0063343523 = score(doc=1764,freq=6.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.13239266 = fieldWeight in 1764, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1764)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - This paper aims to provide a new insight into the reasons why authors cite. Design/methodology/approach The authors argue that, based on philosophical ideas about the essence of things, pure rational thinking about the role of citations leads to the answer. Findings - Citations originate from the interestingness of the investigated phenomenon. The essence of citation lies in the interaction between different ideas or perspectives on a phenomenon addressed in the citing as well as in the cited articles. Research limitations/implications - The findings only apply to ethical (not whimsical or self-serving) citations. As such citations reflect interactions of scientific ideas, they can reveal the evolution of science, revive the cognitive process of an investigated scientific phenomenon and reveal political and economic factors influencing the development of science. Originality/value - This article is the first to propose interestingness and the interaction of ideas as the basic reason for citing. This view on citations allows reverse engineering from citations to ideas and hence becomes useful for science policy.
    Type
    a
  16. Hu, X.; Rousseau, R.: Do citation chimeras exist? : The case of under-cited influential articles suffering delayed recognition (2019) 0.00
    0.0012668705 = product of:
      0.0063343523 = sum of:
        0.0063343523 = weight(_text_:a in 5217) [ClassicSimilarity], result of:
          0.0063343523 = score(doc=5217,freq=6.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.13239266 = fieldWeight in 5217, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5217)
      0.2 = coord(1/5)
    
    Abstract
    In this study we investigate if articles suffering delayed recognition can at the same time be under-cited influential articles. Theoretically these two types of articles are independent, in the sense that suffering delayed recognition depends on the number and time distribution of received citations, while being an under-cited influential article depends only partially on the number of received (first generation) citations, and much more on second and third citation generations. Among 49 articles suffering delayed recognition we found 13 that are also under-cited influential. Based on a thorough investigation of these special cases we found that so-called authoritative citers play an important role in uniting the two different document types into a special citation chimera. Our investigation contributes to the classification of publications.
    Type
    a
  17. Zhang, L.; Rousseau, R.; Glänzel, W.: Diversity of references as an indicator of the interdisciplinarity of journals : taking similarity between subject fields into account (2016) 0.00
    0.0012190467 = product of:
      0.006095233 = sum of:
        0.006095233 = weight(_text_:a in 2902) [ClassicSimilarity], result of:
          0.006095233 = score(doc=2902,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.12739488 = fieldWeight in 2902, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2902)
      0.2 = coord(1/5)
    
    Abstract
    The objective of this article is to further the study of journal interdisciplinarity, or, more generally, knowledge integration at the level of individual articles. Interdisciplinarity is operationalized by the diversity of subject fields assigned to cited items in the article's reference list. Subject fields and subfields were obtained from the Leuven-Budapest (ECOOM) subject-classification scheme, while disciplinary diversity was measured taking variety, balance, and disparity into account. As diversity measure we use a Hill-type true diversity in the sense of Jost and Leinster-Cobbold. The analysis is conducted in 3 steps. In the first part, the properties of this measure are discussed, and, on the basis of these properties it is shown that the measure has the potential to serve as an indicator of interdisciplinarity. In the second part the applicability of this indicator is shown using selected journals from several research fields ranging from mathematics to social sciences. Finally, the often-heard argument, namely, that interdisciplinary research exhibits larger visibility and impact, is studied on the basis of these selected journals. Yet, as only 7 journals, representing a total of 15,757 articles, are studied, albeit chosen to cover a large range of interdisciplinarity, further research is still needed.
    Type
    a
  18. Rousseau, R.; Ding, J.: Does international collaboration yield a higher citation potential for US scientists publishing in highly visible interdisciplinary Journals? (2016) 0.00
    0.0012067946 = product of:
      0.0060339733 = sum of:
        0.0060339733 = weight(_text_:a in 2860) [ClassicSimilarity], result of:
          0.0060339733 = score(doc=2860,freq=4.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.12611452 = fieldWeight in 2860, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2860)
      0.2 = coord(1/5)
    
    Type
    a
  19. Rousseau, R.; Egghe, L.; Guns, R.: Becoming metric-wise : a bibliometric guide for researchers (2018) 0.00
    0.0010557254 = product of:
      0.005278627 = sum of:
        0.005278627 = weight(_text_:a in 5226) [ClassicSimilarity], result of:
          0.005278627 = score(doc=5226,freq=6.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.11032722 = fieldWeight in 5226, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5226)
      0.2 = coord(1/5)
    
    Abstract
    Aims to inform researchers about metrics so that they become aware of the evaluative techniques being applied to their scientific output. Understanding these concepts will help them during their funding initiatives, and in hiring and tenure. The book not only describes what indicators do (or are designed to do, which is not always the same thing), but also gives precise mathematical formulae so that indicators can be properly understood and evaluated. Metrics have become a critical issue in science, with widespread international discussion taking place on the subject across scientific journals and organizations. As researchers should know the publication-citation context, the mathematical formulae of indicators being used by evaluating committees and their consequences, and how such indicators might be misused, this book provides an ideal tome on the topic. Provides researchers with a detailed understanding of bibliometric indicators and their applications. Empowers researchers looking to understand the indicators relevant to their work and careers. Presents an informed and rounded picture of bibliometrics, including the strengths and shortcomings of particular indicators. Supplies the mathematics behind bibliometric indicators so they can be properly understood. Written by authors with longstanding expertise who are considered global leaders in the field of bibliometrics
  20. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.00
    0.0010343953 = product of:
      0.0051719765 = sum of:
        0.0051719765 = weight(_text_:a in 4384) [ClassicSimilarity], result of:
          0.0051719765 = score(doc=4384,freq=4.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.10809815 = fieldWeight in 4384, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
      0.2 = coord(1/5)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
    Type
    a