Search (7 results, page 1 of 1)

  • × author_ss:"Rousseau, R."
  • × theme_ss:"Informetrie"
  1. Impe, S. van; Rousseau, R.: Web-to-print citations and the humanities (2006) 0.03
    0.02759561 = product of:
      0.11038244 = sum of:
        0.11038244 = weight(_text_:web in 82) [ClassicSimilarity], result of:
          0.11038244 = score(doc=82,freq=20.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.6841342 = fieldWeight in 82, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=82)
      0.25 = coord(1/4)
    
    Abstract
    References to printed documents made on the web are called web-to-print references. These printed documents then in turn receive web-to-print citations. Webto-print citations and web-to-print references are the topic of this article, in which we study the online impact of printed sources. Web-to-print citations are discussed from a structural point of view and a small-scale experiment related to web-to-print citations for local history journals is performed. The main research question in setting up this experiment concerns the possibility of using web-to-print citations as a substitute for classical citation indexes by gauging the importance, visibility and impact of journals in the humanities. Results show the importance of web bibliographies in the field, but, at least for what concerns the journals and the period studied here, the amount of received web-to-print citations is too small to draw general conclusions.
  2. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.02
    0.018333694 = product of:
      0.036667388 = sum of:
        0.023270661 = weight(_text_:web in 5171) [ClassicSimilarity], result of:
          0.023270661 = score(doc=5171,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.14422815 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.013396727 = product of:
          0.026793454 = sum of:
            0.026793454 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.026793454 = score(doc=5171,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
  3. Egghe, L.; Rousseau, R.: Duality in information retrieval and the hypegeometric distribution (1997) 0.01
    0.0131973745 = product of:
      0.052789498 = sum of:
        0.052789498 = weight(_text_:search in 647) [ClassicSimilarity], result of:
          0.052789498 = score(doc=647,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 647, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=647)
      0.25 = coord(1/4)
    
    Abstract
    Asserts that duality is an important topic in informetrics, especially in connection with the classical informetric laws. Yet this concept is less studied in information retrieval. It deals with the unification or symmetry between queries and documents, search formulation versus indexing, and relevant versus retrieved documents. Elaborates these ideas and highlights the connection with the hypergeometric distribution
  4. Zhang, L.; Rousseau, R.; Glänzel, W.: Document-type country profiles (2011) 0.01
    0.0116353305 = product of:
      0.046541322 = sum of:
        0.046541322 = weight(_text_:web in 4487) [ClassicSimilarity], result of:
          0.046541322 = score(doc=4487,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.2884563 = fieldWeight in 4487, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4487)
      0.25 = coord(1/4)
    
    Abstract
    A bibliometric method for analyzing and visualizing national research profiles is adapted to describe national preferences for publishing particular document types. Similarities in national profiles and national peculiarities are discussed based on the publication output of the 26 most active countries indexed in the Web of Science annual volume 2007.
  5. Rousseau, R.; Zuccala, A.: ¬A classification of author co-citations : definitions and search strategies (2004) 0.01
    0.008248359 = product of:
      0.032993436 = sum of:
        0.032993436 = weight(_text_:search in 2266) [ClassicSimilarity], result of:
          0.032993436 = score(doc=2266,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 2266, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2266)
      0.25 = coord(1/4)
    
  6. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.01
    0.0050237724 = product of:
      0.02009509 = sum of:
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.04019018 = score(doc=7659,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  7. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.01
    0.0050237724 = product of:
      0.02009509 = sum of:
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
              0.04019018 = score(doc=5270,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 5270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5270)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 15:26:24