Search (2 results, page 1 of 1)

  • × author_ss:"Shuai, X."
  1. Li, D.; Tang, J.; Ding, Y.; Shuai, X.; Chambers, T.; Sun, G.; Luo, Z.; Zhang, J.: Topic-level opinion influence model (TOIM) : an investigation using tencent microblogging (2015) 0.01
    0.005278751 = product of:
      0.013196876 = sum of:
        0.0076151006 = weight(_text_:a in 2345) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=2345,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 2345, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2345)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 2345) [ClassicSimilarity], result of:
              0.011163551 = score(doc=2345,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 2345, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2345)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Text mining has been widely used in multiple types of user-generated data to infer user opinion, but its application to microblogging is difficult because text messages are short and noisy, providing limited information about user opinion. Given that microblogging users communicate with each other to form a social network, we hypothesize that user opinion is influenced by its neighbors in the network. In this paper, we infer user opinion on a topic by combining two factors: the user's historical opinion about relevant topics and opinion influence from his/her neighbors. We thus build a topic-level opinion influence model (TOIM) by integrating both topic factor and opinion influence factor into a unified probabilistic model. We evaluate our model in one of the largest microblogging sites in China, Tencent Weibo, and the experiments show that TOIM outperforms baseline methods in opinion inference accuracy. Moreover, incorporating indirect influence further improves inference recall and f1-measure. Finally, we demonstrate some useful applications of TOIM in analyzing users' behaviors in Tencent Weibo.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2657-2673
    Type
    a
  2. Shuai, X.; Rollins, J.; Moulinier, I.; Custis, T.; Edmunds, M.; Schilder, F.: ¬A multidimensional investigation of the effects of publication retraction on scholarly impact (2017) 0.00
    0.004915534 = product of:
      0.012288835 = sum of:
        0.008341924 = weight(_text_:a in 3798) [ClassicSimilarity], result of:
          0.008341924 = score(doc=3798,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 3798, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3798)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 3798) [ClassicSimilarity], result of:
              0.007893822 = score(doc=3798,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 3798, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3798)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    During the past few decades, the rate of publication retractions has increased dramatically in academia. In this study, we investigate retractions from a quantitative perspective, aiming to answer two fundamental questions. One, how do retractions influence the scholarly impact of retracted papers, authors, and institutions? Two, does this influence propagate to the wider academic community through scholarly associations? Specifically, we analyzed a set of retracted articles indexed in Thomson Reuters Web of Science (WoS), and ran multiple experiments to compare changes in scholarly impact against a control set of nonretracted articles, authors, and institutions. We further applied the Granger Causality test to investigate whether different scientific topics are dynamically affected by retracted papers occurring within those topics. Our results show two key findings: first, the scholarly impact of retracted papers and authors significantly decreases after retraction, and the most severe impact decrease correlates with retractions based on proven, purposeful scientific misconduct; second, this retraction penalty does not seem to spread through the broader scholarly social graph, but instead has a limited and localized effect. Our findings may provide useful insights for scholars or science committees to evaluate the scholarly value of papers, authors, or institutions related to retractions.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.9, S.2225-2236
    Type
    a