Search (2 results, page 1 of 1)

  • × author_ss:"Song, I.-Y."
  1. Choi, N.; Song, I.-Y.; Han, H.: ¬A survey on ontology mapping 0.00
    0.0023790773 = product of:
      0.0047581545 = sum of:
        0.0047581545 = product of:
          0.009516309 = sum of:
            0.009516309 = weight(_text_:a in 170) [ClassicSimilarity], result of:
              0.009516309 = score(doc=170,freq=10.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.19940455 = fieldWeight in 170, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=170)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontology is increasingly seen as a key factor for enabling interoperability across heterogeneous systems and semantic web applications. Ontology mapping is required for combining distributed and heterogeneous ontologies. Developing such ontology mapping has been a core issue of recent ontology research. This paper presents ontology mapping categories, describes the characteristics of each category, compares these characteristics, and surveys tools, systems, and related work based on each category of ontology mapping. We believe this paper provides readers with a comprehensive understanding of ontology mapping and points to various research topics about the specific roles of ontology mapping.
    Type
    a
  2. Zhang, Y.; Wu, D.; Hagen, L.; Song, I.-Y.; Mostafa, J.; Oh, S.; Anderson, T.; Shah, C.; Bishop, B.W.; Hopfgartner, F.; Eckert, K.; Federer, L.; Saltz, J.S.: Data science curriculum in the iField (2023) 0.00
    0.0013163039 = product of:
      0.0026326077 = sum of:
        0.0026326077 = product of:
          0.0052652154 = sum of:
            0.0052652154 = weight(_text_:a in 964) [ClassicSimilarity], result of:
              0.0052652154 = score(doc=964,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.11032722 = fieldWeight in 964, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=964)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many disciplines, including the broad Field of Information (iField), offer Data Science (DS) programs. There have been significant efforts exploring an individual discipline's identity and unique contributions to the broader DS education landscape. To advance DS education in the iField, the iSchool Data Science Curriculum Committee (iDSCC) was formed and charged with building and recommending a DS education framework for iSchools. This paper reports on the research process and findings of a series of studies to address important questions: What is the iField identity in the multidisciplinary DS education landscape? What is the status of DS education in iField schools? What knowledge and skills should be included in the core curriculum for iField DS education? What are the jobs available for DS graduates from the iField? What are the differences between graduate-level and undergraduate-level DS education? Answers to these questions will not only distinguish an iField approach to DS education but also define critical components of DS curriculum. The results will inform individual DS programs in the iField to develop curriculum to support undergraduate and graduate DS education in their local context.
    Type
    a