Search (44 results, page 2 of 3)

  • × author_ss:"Spink, A."
  • × year_i:[2000 TO 2010}
  1. Jansen, B.J.; Spink, A.; Saracevic, T.: Real life, real users and real needs : a study and analysis of users queries on the Web (2000) 0.01
    0.0077074226 = product of:
      0.053951956 = sum of:
        0.041844364 = weight(_text_:web in 411) [ClassicSimilarity], result of:
          0.041844364 = score(doc=411,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43268442 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=411)
        0.012107591 = weight(_text_:information in 411) [ClassicSimilarity], result of:
          0.012107591 = score(doc=411,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23274569 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=411)
      0.14285715 = coord(2/14)
    
    Source
    Information processing and management. 36(2000) no.2, S.207-227
  2. Spink, A.; Ozmultu, H.C.: Characteristics of question format web queries : an exploratory study (2002) 0.01
    0.007609078 = product of:
      0.053263545 = sum of:
        0.046129078 = weight(_text_:web in 3910) [ClassicSimilarity], result of:
          0.046129078 = score(doc=3910,freq=14.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.47698978 = fieldWeight in 3910, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3910)
        0.0071344664 = weight(_text_:information in 3910) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3910,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3910, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3910)
      0.14285715 = coord(2/14)
    
    Abstract
    Web queries in question format are becoming a common element of a user's interaction with Web search engines. Web search services such as Ask Jeeves - a publicly accessible question and answer (Q&A) search engine - request users to enter question format queries. This paper provides results from a study examining queries in question format submitted to two different Web search engines - Ask Jeeves that explicitly encourages queries in question format and the Excite search service that does not explicitly encourage queries in question format. We identify the characteristics of queries in question format in two different data sets: (1) 30,000 Ask Jeeves queries and 15,575 Excite queries, including the nature, length, and structure of queries in question format. Findings include: (1) 50% of Ask Jeeves queries and less than 1% of Excite were in question format, (2) most users entered only one query in question format with little query reformulation, (3) limited range of formats for queries in question format - mainly "where", "what", or "how" questions, (4) most common question query format was "Where can I find ..." for general information on a topic, and (5) non-question queries may be in request format. Overall, four types of user Web queries were identified: keyword, Boolean, question, and request. These findings provide an initial mapping of the structure and content of queries in question and request format. Implications for Web search services are discussed.
    Source
    Information processing and management. 38(2002) no.4, S.453-471
  3. Koshman, S.; Spink, A.; Jansen, B.J.: Web searching on the Vivisimo search engine (2006) 0.01
    0.007609078 = product of:
      0.053263545 = sum of:
        0.046129078 = weight(_text_:web in 216) [ClassicSimilarity], result of:
          0.046129078 = score(doc=216,freq=14.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.47698978 = fieldWeight in 216, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=216)
        0.0071344664 = weight(_text_:information in 216) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=216,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 216, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=216)
      0.14285715 = coord(2/14)
    
    Abstract
    The application of clustering to Web search engine technology is a novel approach that offers structure to the information deluge often faced by Web searchers. Clustering methods have been well studied in research labs; however, real user searching with clustering systems in operational Web environments is not well understood. This article reports on results from a transaction log analysis of Vivisimo.com, which is a Web meta-search engine that dynamically clusters users' search results. A transaction log analysis was conducted on 2-week's worth of data collected from March 28 to April 4 and April 25 to May 2, 2004, representing 100% of site traffic during these periods and 2,029,734 queries overall. The results show that the highest percentage of queries contained two terms. The highest percentage of search sessions contained one query and was less than 1 minute in duration. Almost half of user interactions with clusters consisted of displaying a cluster's result set, and a small percentage of interactions showed cluster tree expansion. Findings show that 11.1% of search sessions were multitasking searches, and there are a broad variety of search topics in multitasking search sessions. Other searching interactions and statistics on repeat users of the search engine are reported. These results provide insights into search characteristics with a cluster-based Web search engine and extend research into Web searching trends.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.14, S.1875-1887
  4. Jansen, B.J.; Booth, D.L.; Spink, A.: Determining the informational, navigational, and transactional intent of Web queries (2008) 0.01
    0.0075481744 = product of:
      0.05283722 = sum of:
        0.046783425 = weight(_text_:web in 2091) [ClassicSimilarity], result of:
          0.046783425 = score(doc=2091,freq=10.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.48375595 = fieldWeight in 2091, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2091)
        0.0060537956 = weight(_text_:information in 2091) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2091,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2091, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2091)
      0.14285715 = coord(2/14)
    
    Abstract
    In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.
    Source
    Information processing and management. 44(2008) no.3, S.1251-1266
  5. Cool, C.; Spink, A.: Issues of context in information retrieval (IR) : an introduction to the special issue (2002) 0.01
    0.007069463 = product of:
      0.04948624 = sum of:
        0.013536699 = weight(_text_:information in 2587) [ClassicSimilarity], result of:
          0.013536699 = score(doc=2587,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 2587, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2587)
        0.03594954 = weight(_text_:retrieval in 2587) [ClassicSimilarity], result of:
          0.03594954 = score(doc=2587,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40105087 = fieldWeight in 2587, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2587)
      0.14285715 = coord(2/14)
    
    Abstract
    The subject of context has received a great deal of attention in the information retrieval (IR) literature over the past decade, primarily in studies of information seeking and IR interactions. Recently, attention to context in IR has expanded to address new problems in new environments. In this paper we outline five overlapping dimensions of context which we believe to be important constituent elements and we discuss how they are related to different issues in IR research. The papers in this special issue are summarized with respect to how they represent work that is being conducted within these dimensions of context. We conclude with future areas of research which are needed in order to fully understand the multidimensional nature of context in IR.
    Footnote
    Einführung in ein Themenheft: "Issues of context in information retrieval (IR)"
    Source
    Information processing and management. 38(2002) no.5, S.605-611
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  6. Spink, A.: Multitasking information behavior and information task switching : an exploratory study (2004) 0.01
    0.0069520227 = product of:
      0.048664156 = sum of:
        0.020922182 = weight(_text_:web in 4426) [ClassicSimilarity], result of:
          0.020922182 = score(doc=4426,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 4426, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4426)
        0.027741974 = weight(_text_:information in 4426) [ClassicSimilarity], result of:
          0.027741974 = score(doc=4426,freq=42.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.53328735 = fieldWeight in 4426, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4426)
      0.14285715 = coord(2/14)
    
    Abstract
    Recent studies show that humans engage in multitasking information behaviors, often in libraries, as they seek and search for information on more than one information task. Multitasking information behaviors may consist of library search and use behaviors, or database or Web search sessions on multiple information tasks. However, few human information behavior models of seeking, searching or use, or library use models, include considerations of multitasking information behavior. This paper reports results from a case study exploring multitasking information behavior by an information seeker in a public library using diary, observation and interview data collection techniques. The information seeker sought information on four unrelated personal information tasks during two public library visits. Findings include a taxonomy of information behaviors; a sequential flowchart of the information seeker's complex and iterative processes, including multitasking information behavior, electronic searches, physical library searches, serendipitous browsing, and successive searches; and that the information seeker engaged in a process of 17 information task switches over two library visits. A model of information multitasking and information task switching is presented. Implications for library services and bibliographic instruction are also discussed.
  7. Jansen, B.J.; Booth, D.L.; Spink, A.: Patterns of query reformulation during Web searching (2009) 0.01
    0.0068425946 = product of:
      0.04789816 = sum of:
        0.041844364 = weight(_text_:web in 2936) [ClassicSimilarity], result of:
          0.041844364 = score(doc=2936,freq=8.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43268442 = fieldWeight in 2936, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2936)
        0.0060537956 = weight(_text_:information in 2936) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2936,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2936, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2936)
      0.14285715 = coord(2/14)
    
    Abstract
    Query reformulation is a key user behavior during Web search. Our research goal is to develop predictive models of query reformulation during Web searching. This article reports results from a study in which we automatically classified the query-reformulation patterns for 964,780 Web searching sessions, composed of 1,523,072 queries, to predict the next query reformulation. We employed an n-gram modeling approach to describe the probability of users transitioning from one query-reformulation state to another to predict their next state. We developed first-, second-, third-, and fourth-order models and evaluated each model for accuracy of prediction, coverage of the dataset, and complexity of the possible pattern set. The results show that Reformulation and Assistance account for approximately 45% of all query reformulations; furthermore, the results demonstrate that the first- and second-order models provide the best predictability, between 28 and 40% overall and higher than 70% for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1358-1371
  8. Spink, A.; Cole, C.: Introduction (2004) 0.01
    0.0068346933 = product of:
      0.04784285 = sum of:
        0.02387649 = weight(_text_:information in 2389) [ClassicSimilarity], result of:
          0.02387649 = score(doc=2389,freq=70.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.45898068 = fieldWeight in 2389, product of:
              8.3666 = tf(freq=70.0), with freq of:
                70.0 = termFreq=70.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2389)
        0.023966359 = weight(_text_:retrieval in 2389) [ClassicSimilarity], result of:
          0.023966359 = score(doc=2389,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.26736724 = fieldWeight in 2389, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2389)
      0.14285715 = coord(2/14)
    
    Abstract
    This is the second part of a two-part special topic JASIST issue an information seeking. The first part presented papers an the topics of health information seeking and everyday life information seeking or ELIS (i.e., information seeking outside of work or school). This second issue presents papers an the topics of information retrieval and information seeking in industry environments. Information retrieval involves a specific kind of information seeking, as the user is in direct contact with an information interface and with potential sources of information from the system's database. The user conducts the search using various strategies, tactics, etc., but there is also the possibility that information processes will occur resulting in a change in the way the user thinks about the topic of the search. If this occurs, the user is, in effect, using the found data, turning it into an informational element of some kind. Such processes can be facilitated in the design of the information retrieval system. Information seeking in industry environments takes up more and more of our working day. Even companies producing industrial products are in fact mainly producing informational elements of some kind, often for the purpose of making decisions or as starting positions for further information seeking. While there may be company mechanisms in place to aid such information seeking, and to make it more efficient, if better information seeking structures were in place, not only would workers waste less time in informational pursuits, but they would also find things, discover new processes, etc., that would benefit the corporation's bottom line. In Figure l, we plot the six papers in this issue an an information behavior continuum, following a taxonomy of information behavior terms from Spink and Cole (2001). Information Behavior is a broad term covering all aspects of information seeking, including passive or undetermined information behavior. Information-Seeking Behavior is usually thought of as active or conscious information behavior. Information-Searching Behavior describes the interactive elements between a user and an information system. Information-Use Behavior is about the user's acquisition and incorporation of data in some kind of information process. This leads to the production of information, but also back to the broad range of Information Behavior in the first part of the continuum. Though we plot all papers in this issue along this continuum, they take into account more than their general framework. The three information retrieval reports veer from the traditional information-searching approach of usersystem interaction, while the three industry environment articles veer from the traditional information-seeking approach of specific context information-seeking studies.
    Footnote
    Einführung zum Themenheft: Information seeking research
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.9, S.767-768
  9. Spink, A.; Cole, C.: New directions in cognitive information retrieval : conclusion and further research (2005) 0.01
    0.0057186526 = product of:
      0.040030565 = sum of:
        0.010677892 = weight(_text_:information in 637) [ClassicSimilarity], result of:
          0.010677892 = score(doc=637,freq=14.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.20526241 = fieldWeight in 637, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=637)
        0.029352674 = weight(_text_:retrieval in 637) [ClassicSimilarity], result of:
          0.029352674 = score(doc=637,freq=12.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.32745665 = fieldWeight in 637, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=637)
      0.14285715 = coord(2/14)
    
    Abstract
    New Directions in Cognitive Information Retrieval (IR) gathers user or cognitive approaches to IR research into one volume. The group of researchers focus on a middleground perspective between system and user. They ask the question: What is the nexus between the wider context of why and how humans behave when seeking information and the technological and other constraints that determine the interaction between user and machine? These researchers' concern for the application of user/cognitive-oriented research to IR system design thus serves as a meeting ground linking computer scientists with their largely system performance concerns and the social science research that examines human information behavior in the wider context of how human perception and cognitive mechanisms function, and the work and social frameworks in which we live. The researchers in this volume provide an in-depth revaluation of the concepts that form the basis of current IR retrieval system design. Current IR systems are in a certain sense based on design conceptualizations that view - the user's role in the user-system interaction as an input and monitoring mechanism for system performance; - the system's role in the user-system interaction as a data acquisition system, not an information retrieval system; and - the central issue in the user-system interaction as the efficacy of the system's matching algorithms, matching the user request statement to representations of the document set contained in the system's database. But the era of matching-focused approaches to interactive IR appears to be giving way to a concern for developing interactive systems to facilitate collaboration between users in the performance of their work and social tasks. There is room for cognitive approaches to interaction to break in here.
    Series
    The information retrieval series, vol. 19
    Source
    New directions in cognitive information retrieval. Eds.: A. Spink, C. Cole
  10. Jansen, B.J.; Spink, A.; Blakely, C.; Koshman, S.: Defining a session on Web search engines (2007) 0.01
    0.0050347717 = product of:
      0.0352434 = sum of:
        0.03019857 = weight(_text_:web in 285) [ClassicSimilarity], result of:
          0.03019857 = score(doc=285,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.3122631 = fieldWeight in 285, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=285)
        0.0050448296 = weight(_text_:information in 285) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=285,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 285, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=285)
      0.14285715 = coord(2/14)
    
    Abstract
    Detecting query reformulations within a session by a Web searcher is an important area of research for designing more helpful searching systems and targeting content to particular users. Methods explored by other researchers include both qualitative (i.e., the use of human judges to manually analyze query patterns on usually small samples) and nondeterministic algorithms, typically using large amounts of training data to predict query modification during sessions. In this article, we explore three alternative methods for detection of session boundaries. All three methods are computationally straightforward and therefore easily implemented for detection of session changes. We examine 2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005. We compare session analysis using (a) Internet Protocol address and cookie; (b) Internet Protocol address, cookie, and a temporal limit on intrasession interactions; and (c) Internet Protocol address, cookie, and query reformulation patterns. Overall, our analysis shows that defining sessions by query reformulation along with Internet Protocol address and cookie provides the best measure, resulting in an 82% increase in the count of sessions. Regardless of the method used, the mean session length was fewer than three queries, and the mean session duration was less than 30 min. Searchers most often modified their query by changing query terms (nearly 23% of all query modifications) rather than adding or deleting terms. Implications are that for measuring searching traffic, unique sessions may be a better indicator than the common metric of unique visitors. This research also sheds light on the more complex aspects of Web searching involving query modifications and may lead to advances in searching tools.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.6, S.862-871
  11. Spink, A.; Wilson, T.D.; Ford, N.; Foster, A.; Ellis, D.: Information seeking and mediated searching : Part 1: theoretical framework and research design (2002) 0.00
    0.0046862117 = product of:
      0.03280348 = sum of:
        0.01482871 = weight(_text_:information in 5240) [ClassicSimilarity], result of:
          0.01482871 = score(doc=5240,freq=12.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2850541 = fieldWeight in 5240, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5240)
        0.01797477 = weight(_text_:retrieval in 5240) [ClassicSimilarity], result of:
          0.01797477 = score(doc=5240,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 5240, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5240)
      0.14285715 = coord(2/14)
    
    Abstract
    In this issue we begin with the first of four parts of a five part series of papers by Spink, Wilson, Ford, Foster, and Ellis. Spink, et alia, in the first section of this report set forth the design of a project to test whether existing models of the information search process are appropriate for an environment of mediated successive searching which they believe characterizes much information seeking behavior. Their goal is to develop an integrated model of the process. Data were collected from 198 individuals, 87 in Texas and 111 in Sheffield in the U.K., with individuals with real information needs engaged in interaction with operational information retrieval systems by use of transaction logs, recordings of interactions with intermediaries, pre, and post search interviews, questionnaire responses, relevance judgments of retrieved text, and responses to a test of cognitive styles. Questionnaires were based upon the Kuhlthau model, the Saracevic model, the Ellis model, and incorporated a visual analog scale to avoid a consistency bias.
    Source
    Journal of the American Society for Information Science and Technology. 53(2002) no.9, S.695-703
  12. Spink, A.; Gunar, O.: E-Commerce Web queries : Excite and AskJeeves study (2001) 0.00
    0.0039851777 = product of:
      0.05579249 = sum of:
        0.05579249 = weight(_text_:web in 910) [ClassicSimilarity], result of:
          0.05579249 = score(doc=910,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.5769126 = fieldWeight in 910, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.125 = fieldNorm(doc=910)
      0.071428575 = coord(1/14)
    
  13. Desai, M.; Spink, A.: ¬A algorithm to cluster documents based on relevance (2005) 0.00
    0.0038537113 = product of:
      0.026975978 = sum of:
        0.020922182 = weight(_text_:web in 1035) [ClassicSimilarity], result of:
          0.020922182 = score(doc=1035,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 1035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1035)
        0.0060537956 = weight(_text_:information in 1035) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=1035,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 1035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1035)
      0.14285715 = coord(2/14)
    
    Abstract
    Search engines fail to make a clear distinction between items of varying relevance when presenting search results to users. Instead, they rely on the user of the system to estimate which items are relevant, partially relevant, or not relevant. The user of the system is given the task of distinguishing between documents that are relevant to different degrees. This process often hinders the accessibility of relevant or partially relevant documents, particularly when the results set is large and documents of varying relevance are scattered throughout the set. In this paper, we present a clustering scheme that groups documents within relevant, partially relevant, and not relevant regions for a given search. A clustering algorithm accomplishes the task of clustering documents based on relevance. The clusters were evaluated by end-users issuing categorical, interval, and descriptive relevance judgments for the documents returned from a search. The degree of overlap between users and the system for each of the clustered regions was measured to determine the overall effectiveness of the algorithm. This research showed that clustering documents on the Web by regions of relevance is highly necessary and quite feasible.
    Source
    Information processing and management. 41(2005) no.5, S.1035-1050
  14. Spink, A.; Greisdorf, H.: Regions and levels : Measuring and mapping users' relevance judgements (2001) 0.00
    0.0033881254 = product of:
      0.023716876 = sum of:
        0.008737902 = weight(_text_:information in 5586) [ClassicSimilarity], result of:
          0.008737902 = score(doc=5586,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16796975 = fieldWeight in 5586, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5586)
        0.014978974 = weight(_text_:retrieval in 5586) [ClassicSimilarity], result of:
          0.014978974 = score(doc=5586,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 5586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5586)
      0.14285715 = coord(2/14)
    
    Abstract
    The dichotomous bipolar approach to relevance has produced an abundance of information retrieval (M) research. However, relevance studies that include consideration of users' partial relevance judgments are moving to a greater relevance clarity and congruity to impact the design of more effective [R systems. The study reported in this paper investigates the various regions of across a distribution of users' relevance judgments, including how these regions may be categorized, measured, and evaluated. An instrument was designed using four scales for collecting, measuring, and describing enduser relevance judgments. The instrument was administered to 21 end-users who conducted searches on their own information problems and made relevance judgments on a total of 1059 retrieved items. Findings include: (1) overlapping regions of relevance were found to impact the usefulness of precision ratios as a measure of IR system effectiveness, (2) both positive and negative levels of relevance are important to users as they make relevance judgments, (3) topicality was used more to reject rather than accept items as highly relevant, (4) utility was more used to judge items highly relevant, and (5) the nature of relevance judgment distribution suggested a new IR evaluation measure-median effect. Findings suggest that the middle region of a distribution of relevance judgments, also called "partial relevance," represents a key avenue for ongoing study. The findings provide implications for relevance theory, and the evaluation of IR systems
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.2, S.161-173
  15. Spink, A.; Park, M.: Information and non-information multitasking interplay (2005) 0.00
    0.0019815697 = product of:
      0.027741974 = sum of:
        0.027741974 = weight(_text_:information in 4330) [ClassicSimilarity], result of:
          0.027741974 = score(doc=4330,freq=42.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.53328735 = fieldWeight in 4330, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4330)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose - During multitasking, humans handle multiple tasks through task switching or engage in multitasking information behaviors. For example, a user switches between seeking new kitchen information and medical information. Recent studies provide insights these complex multitasking human information behaviors (HIB). However, limited studies have examined the interplay between information and non-information tasks. Design/methodology/approach - The goal of the paper was to examine the interplay of information and non-information task behaviors. Findings - This paper explores and speculates on a new direction in HIB research. The nature of HIB as a multitasking activity including the interplay of information and non-information behavior tasks, and the relation between multitasking information behavior to cognitive style and individual differences, is discussed. A model of multitasking between information and non-information behavior tasks is proposed. Practical implications/limitations - Multitasking information behavior models should include the interplay of information and non-information tasks, and individual differences and cognitive styles. Originality/value - The paper is the first information science theoretical examination of the interplay between information and non-information tasks.
  16. Spink, A.; Cole, C.: ¬A human information behavior approach to a philosophy of information (2004) 0.00
    0.0015953153 = product of:
      0.022334414 = sum of:
        0.022334414 = weight(_text_:information in 837) [ClassicSimilarity], result of:
          0.022334414 = score(doc=837,freq=20.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.42933714 = fieldWeight in 837, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=837)
      0.071428575 = coord(1/14)
    
    Abstract
    This paper outlines the relation between philosophy of information (PI) and human information behavior (HIB). In this paper, we first briefly outline the basic constructs and approaches of PI and HIB. We argue that a strong relation exists between PI and HIB, as both are exploring the concept of information and premise information as a fundamental concept basic to human existence. We then exemplify that a heuristic approach to PI integrates the HIB view of information as a cognitive human-initiated process by presenting a specific cognitive architecture for information initiation based on modular notion from HIB/evolutionary psychology and the vacuum mechanism from PI.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Theme
    Information
  17. Spink, A.; Cole, C.: Human information behavior : integrating diverse approaches and information use (2006) 0.00
    0.0015288142 = product of:
      0.021403398 = sum of:
        0.021403398 = weight(_text_:information in 4915) [ClassicSimilarity], result of:
          0.021403398 = score(doc=4915,freq=36.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.41144013 = fieldWeight in 4915, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4915)
      0.071428575 = coord(1/14)
    
    Abstract
    For millennia humans have sought, organized, and used information as they learned and evolved patterns of human information behaviors to resolve their human problems and survive. However, despite the current focus an living in an "information age," we have a limited evolutionary understanding of human information behavior. In this article the authors examine the current three interdisciplinary approaches to conceptualizing how humans have sought information including (a) the everyday life information seeking-sense-making approach, (b) the information foraging approach, and (c) the problem-solution perspective an information seeking approach. In addition, due to the lack of clarity regarding the rote of information use in information behavior, a fourth information approach is provided based an a theory of information use. The use theory proposed starts from an evolutionary psychology notion that humans are able to adapt to their environment and survive because of our modular cognitive architecture. Finally, the authors begin the process of conceptualizing these diverse approaches, and the various aspects or elements of these approaches, within an integrated model with consideration of information use. An initial integrated model of these different approaches with information use is proposed.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.1, S.25-35
    Theme
    Information
  18. Spink, A.; Currier, J.: Towards an evolutionary perspective for human information behavior : an exploratory study (2006) 0.00
    0.0012992423 = product of:
      0.018189391 = sum of:
        0.018189391 = weight(_text_:information in 5592) [ClassicSimilarity], result of:
          0.018189391 = score(doc=5592,freq=26.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.34965688 = fieldWeight in 5592, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5592)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose - Since the beginning of human existence, humankind has sought, organized and used information as it evolved patterns and practices of human information behaviors. However, the field of human information behavior (HIB) has not heretofore pursued an evolutionary understanding of information behavior. The goal of this exploratory study is to provide insight about the information behavior of various individuals from the past to begin the development of an evolutionary perspective for our understanding of HIB. Design/methodology/approach - This paper presents findings from a qualitative analysis of the autobiographies and personal writings of several historical figures, including Napoleon Bonaparte, Charles Darwin, Giacomo Casanova and others. Findings - Analysis of their writings shows that these persons of the past articulated aspects of their HIB's, including information seeking, information organization and information use, providing tangible insights into their information-related thoughts and actions. Practical implications - This paper has implications for expanding the nature of our evolutionary understanding of information behavior and provides a broader context for the HIB research field. Originality/value - This the first paper in the information science field of HIB to study the information behavior of historical figures and begin to develop an evolutionary framework for HIB research.
  19. Griesdorf, H.; Spink, A.: Median measure : an approach to IR systems evaluation (2001) 0.00
    0.001008966 = product of:
      0.014125523 = sum of:
        0.014125523 = weight(_text_:information in 1774) [ClassicSimilarity], result of:
          0.014125523 = score(doc=1774,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.27153665 = fieldWeight in 1774, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=1774)
      0.071428575 = coord(1/14)
    
    Source
    Information processing and management. 37(2001) no.6, S.843-857
  20. Ford, N.; Wilson, T.D.; Foster, A.; Ellis, D.; Spink, A.: Information seeking and mediated searching : Part 4: cognitive styles in information seeking (2002) 0.00
    9.6690713E-4 = product of:
      0.013536699 = sum of:
        0.013536699 = weight(_text_:information in 5239) [ClassicSimilarity], result of:
          0.013536699 = score(doc=5239,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 5239, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5239)
      0.071428575 = coord(1/14)
    
    Abstract
    In "Part 4. Cognitive Styles in Information Seeking,'' where Ford is the primary author, the results of the application of the Riding's Cognitive Styles Analysis and the Pask's holist/serialist portion of the Ford's Study Process Questionnaire to the 111 U.K. participants. were correlated using Spearman's coefficient with reports of focused thinking, degree of change in the intermediary's perception of the problem and personal knowledge, problem stage, degree of differentiating activity, change in problem perception, engagement in exploring activity, changes in questioning, valuing of serendipitous information, and other variables. The results would indicate that field independent individuals report clearer more focused thinking, see themselves in an earlier problem stage, and report higher levels of change in perception of the problem. Holists value serendipity and report engagement in Kuhlthau's exploring stage. They are seen by intermediaries as exhibiting fewer changes in questioning behavior. A fifth section will appear in a later issue.
    Source
    Journal of the American Society for Information Science and Technology. 53(2002) no.9, S.728-735