Search (2 results, page 1 of 1)

  • × author_ss:"Srinivasan, P."
  • × year_i:[2010 TO 2020}
  1. Bhattacharya, S.; Yang, C.; Srinivasan, P.; Boynton, B.: Perceptions of presidential candidates' personalities in twitter (2016) 0.02
    0.01938208 = product of:
      0.03876416 = sum of:
        0.03876416 = sum of:
          0.0075639198 = weight(_text_:a in 2635) [ClassicSimilarity], result of:
            0.0075639198 = score(doc=2635,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14243183 = fieldWeight in 2635, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2635)
          0.03120024 = weight(_text_:22 in 2635) [ClassicSimilarity], result of:
            0.03120024 = score(doc=2635,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 2635, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2635)
      0.5 = coord(1/2)
    
    Abstract
    Political sentiment analysis using social media, especially Twitter, has attracted wide interest in recent years. In such research, opinions about politicians are typically divided into positive, negative, or neutral. In our research, the goal is to mine political opinion from social media at a higher resolution by assessing statements of opinion related to the personality traits of politicians; this is an angle that has not yet been considered in social media research. A second goal is to contribute a novel retrieval-based approach for tracking public perception of personality using Gough and Heilbrun's Adjective Check List (ACL) of 110 terms describing key traits. This is in contrast to the typical lexical and machine-learning approaches used in sentiment analysis. High-precision search templates developed from the ACL were run on an 18-month span of Twitter posts mentioning Obama and Romney and these retrieved more than half a million tweets. For example, the results indicated that Romney was perceived as more of an achiever and Obama was perceived as somewhat more friendly. The traits were also aggregated into 14 broad personality dimensions. For example, Obama rated far higher than Romney on the Moderation dimension and lower on the Machiavellianism dimension. The temporal variability of such perceptions was explored.
    Date
    22. 1.2016 11:25:47
    Type
    a
  2. Qiu, X.Y.; Srinivasan, P.; Hu, Y.: Supervised learning models to predict firm performance with annual reports : an empirical study (2014) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 1205) [ClassicSimilarity], result of:
              0.00994303 = score(doc=1205,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 1205, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Text mining and machine learning methodologies have been applied toward knowledge discovery in several domains, such as biomedicine and business. Interestingly, in the business domain, the text mining and machine learning community has minimally explored company annual reports with their mandatory disclosures. In this study, we explore the question "How can annual reports be used to predict change in company performance from one year to the next?" from a text mining perspective. Our article contributes a systematic study of the potential of company mandatory disclosures using a computational viewpoint in the following aspects: (a) We characterize our research problem along distinct dimensions to gain a reasonably comprehensive understanding of the capacity of supervised learning methods in predicting change in company performance using annual reports, and (b) our findings from unbiased systematic experiments provide further evidence about the economic incentives faced by analysts in their stock recommendations and speculations on analysts having access to more information in producing earnings forecast.
    Type
    a