Search (4 results, page 1 of 1)

  • × author_ss:"Thelwall, M."
  • × language_ss:"e"
  • × theme_ss:"Citation indexing"
  1. Thelwall, M.; Kousha, K.; Stuart, E.; Makita, M.; Abdoli, M.; Wilson, P.; Levitt, J.: In which fields are citations indicators of research quality? (2023) 0.02
    0.022704724 = product of:
      0.04540945 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 1033) [ClassicSimilarity], result of:
              0.023542227 = score(doc=1033,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 1033, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1033)
          0.25 = coord(1/4)
        0.039523892 = product of:
          0.079047784 = sum of:
            0.079047784 = weight(_text_:assessment in 1033) [ClassicSimilarity], result of:
              0.079047784 = score(doc=1033,freq=2.0), product of:
                0.25917634 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30499613 = fieldWeight in 1033, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1033)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Citation counts are widely used as indicators of research quality to support or replace human peer review and for lists of top cited papers, researchers, and institutions. Nevertheless, the relationship between citations and research quality is poorly evidenced. We report the first large-scale science-wide academic evaluation of the relationship between research quality and citations (field normalized citation counts), correlating them for 87,739 journal articles in 34 field-based UK Units of Assessment (UoA). The two correlate positively in all academic fields, from very weak (0.1) to strong (0.5), reflecting broadly linear relationships in all fields. We give the first evidence that the correlations are positive even across the arts and humanities. The patterns are similar for the field classification schemes of Scopus and Dimensions.ai, although varying for some individual subjects and therefore more uncertain for these. We also show for the first time that no field has a citation threshold beyond which all articles are excellent quality, so lists of top cited articles are not pure collections of excellence, and neither is any top citation percentile indicator. Thus, while appropriately field normalized citations associate positively with research quality in all fields, they never perfectly reflect it, even at high values.
  2. Thelwall, M.: Extracting macroscopic information from Web links (2001) 0.00
    0.0020808585 = product of:
      0.008323434 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 6851) [ClassicSimilarity], result of:
              0.033293735 = score(doc=6851,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 6851, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6851)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Much has been written about the potential and pitfalls of macroscopic Web-based link analysis, yet there have been no studies that have provided clear statistical evidence that any of the proposed calculations can produce results over large areas of the Web that correlate with phenomena external to the Internet. This article attempts to provide such evidence through an evaluation of Ingwersen's (1998) proposed external Web Impact Factor (WIF) for the original use of the Web: the interlinking of academic research. In particular, it studies the case of the relationship between academic hyperlinks and research activity for universities in Britain, a country chosen for its variety of institutions and the existence of an official government rating exercise for research. After reviewing the numerous reasons why link counts may be unreliable, it demonstrates that four different WIFs do, in fact, correlate with the conventional academic research measures. The WIF delivering the greatest correlation with research rankings was the ratio of Web pages with links pointing at research-based pages to faculty numbers. The scarcity of links to electronic academic papers in the data set suggests that, in contrast to citation analysis, this WIF is measuring the reputations of universities and their scholars, rather than the quality of their publications
  3. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.00
    0.0020808585 = product of:
      0.008323434 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 337) [ClassicSimilarity], result of:
              0.033293735 = score(doc=337,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 337, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=337)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
  4. Thelwall, M.; Harries, G.: ¬The connection between the research of a university and counts of links to its Web pages : an investigation based upon a classification of the relationships of pages to the research of the host university (2003) 0.00
    0.002059945 = product of:
      0.00823978 = sum of:
        0.00823978 = product of:
          0.03295912 = sum of:
            0.03295912 = weight(_text_:based in 1676) [ClassicSimilarity], result of:
              0.03295912 = score(doc=1676,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23302436 = fieldWeight in 1676, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1676)
          0.25 = coord(1/4)
      0.25 = coord(1/4)