Search (17 results, page 1 of 1)

  • × author_ss:"Thelwall, M."
  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  1. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.02
    0.020863095 = product of:
      0.04172619 = sum of:
        0.02586502 = weight(_text_:data in 57) [ClassicSimilarity], result of:
          0.02586502 = score(doc=57,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 57, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=57)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.03172234 = score(doc=57,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Webometric network analyses have been used to map the connectivity of groups of websites to identify clusters, important sites or overall structure. Such analyses have mainly been based upon hyperlink counts, the number of hyperlinks between a pair of websites, although some have used title mentions or URL citations instead. The ability to automatically gather hyperlink counts from Yahoo! ceased in April 2011 and the ability to manually gather such counts was due to cease by early 2012, creating a need for alternatives. This article assesses URL citations and title mentions as possible replacements for hyperlinks in both binary and weighted direct link and co-inlink network diagrams. It also assesses three different types of data for the network connections: hit count estimates, counts of matching URLs, and filtered counts of matching URLs. Results from analyses of U.S. library and information science departments and U.K. universities give evidence that metrics based upon URLs or titles can be appropriate replacements for metrics based upon hyperlinks for both binary and weighted networks, although filtered counts of matching URLs are necessary to give the best results for co-title mention and co-URL citation network diagrams.
    Date
    6. 4.2012 18:16:22
  2. Mohammadi , E.; Thelwall, M.: Mendeley readership altmetrics for the social sciences and humanities : research evaluation and knowledge flows (2014) 0.01
    0.011199882 = product of:
      0.04479953 = sum of:
        0.04479953 = weight(_text_:data in 2190) [ClassicSimilarity], result of:
          0.04479953 = score(doc=2190,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.30255508 = fieldWeight in 2190, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2190)
      0.25 = coord(1/4)
    
    Abstract
    Although there is evidence that counting the readers of an article in the social reference site, Mendeley, may help to capture its research impact, the extent to which this is true for different scientific fields is unknown. In this study, we compare Mendeley readership counts with citations for different social sciences and humanities disciplines. The overall correlation between Mendeley readership counts and citations for the social sciences was higher than for the humanities. Low and medium correlations between Mendeley bookmarks and citation counts in all the investigated disciplines suggest that these measures reflect different aspects of research impact. Mendeley data were also used to discover patterns of information flow between scientific fields. Comparing information flows based on Mendeley bookmarking data and cross-disciplinary citation analysis for the disciplines revealed substantial similarities and some differences. Thus, the evidence from this study suggests that Mendeley readership data could be used to help capture knowledge transfer across scientific disciplines, especially for people that read but do not author articles, as well as giving impact evidence at an earlier stage than is possible with citation counts.
  3. Haustein, S.; Peters, I.; Sugimoto, C.R.; Thelwall, M.; Larivière, V.: Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature (2014) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 1229) [ClassicSimilarity], result of:
          0.03657866 = score(doc=1229,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 1229, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1229)
      0.25 = coord(1/4)
    
    Abstract
    Data collected by social media platforms have been introduced as new sources for indicators to help measure the impact of scholarly research in ways that are complementary to traditional citation analysis. Data generated from social media activities can be used to reflect broad types of impact. This article aims to provide systematic evidence about how often Twitter is used to disseminate information about journal articles in the biomedical sciences. The analysis is based on 1.4 million documents covered by both PubMed and Web of Science and published between 2010 and 2012. The number of tweets containing links to these documents was analyzed and compared to citations to evaluate the degree to which certain journals, disciplines, and specialties were represented on Twitter and how far tweets correlate with citation impact. With less than 10% of PubMed articles mentioned on Twitter, its uptake is low in general but differs between journals and specialties. Correlations between tweets and citations are low, implying that impact metrics based on tweets are different from those based on citations. A framework using the coverage of articles and the correlation between Twitter mentions and citations is proposed to facilitate the evaluation of novel social-media-based metrics.
  4. Mohammadi, E.; Thelwall, M.; Haustein, S.; Larivière, V.: Who reads research articles? : an altmetrics analysis of Mendeley user categories (2015) 0.01
    0.009144665 = product of:
      0.03657866 = sum of:
        0.03657866 = weight(_text_:data in 2162) [ClassicSimilarity], result of:
          0.03657866 = score(doc=2162,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 2162, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2162)
      0.25 = coord(1/4)
    
    Abstract
    Little detailed information is known about who reads research articles and the contexts in which research articles are read. Using data about people who register in Mendeley as readers of articles, this article explores different types of users of Clinical Medicine, Engineering and Technology, Social Science, Physics, and Chemistry articles inside and outside academia. The majority of readers for all disciplines were PhD students, postgraduates, and postdocs but other types of academics were also represented. In addition, many Clinical Medicine articles were read by medical professionals. The highest correlations between citations and Mendeley readership counts were found for types of users who often authored academic articles, except for associate professors in some sub-disciplines. This suggests that Mendeley readership can reflect usage similar to traditional citation impact if the data are restricted to readers who are also authors without the delay of impact measured by citation counts. At the same time, Mendeley statistics can also reveal the hidden impact of some research articles, such as educational value for nonauthor users inside academia or the impact of research articles on practice for readers outside academia.
  5. Didegah, F.; Thelwall, M.: Determinants of research citation impact in nanoscience and nanotechnology (2013) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 737) [ClassicSimilarity], result of:
          0.031038022 = score(doc=737,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=737)
      0.25 = coord(1/4)
    
    Abstract
    This study investigates a range of metrics available when a nanoscience and nanotechnology article is published to see which metrics correlate more with the number of citations to the article. It also introduces the degree of internationality of journals and references as new metrics for this purpose. The journal impact factor; the impact of references; the internationality of authors, journals, and references; and the number of authors, institutions, and references were all calculated for papers published in nanoscience and nanotechnology journals in the Web of Science from 2007 to 2009. Using a zero-inflated negative binomial regression model on the data set, the impact factor of the publishing journal and the citation impact of the cited references were found to be the most effective determinants of citation counts in all four time periods. In the entire 2007 to 2009 period, apart from journal internationality and author numbers and internationality, all other predictor variables had significant effects on citation counts.
  6. Shema, H.; Bar-Ilan, J.; Thelwall, M.: Do blog citations correlate with a higher number of future citations? : Research blogs as a potential source for alternative metrics (2014) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 1258) [ClassicSimilarity], result of:
          0.031038022 = score(doc=1258,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 1258, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1258)
      0.25 = coord(1/4)
    
    Abstract
    Journal-based citations are an important source of data for impact indices. However, the impact of journal articles extends beyond formal scholarly discourse. Measuring online scholarly impact calls for new indices, complementary to the older ones. This article examines a possible alternative metric source, blog posts aggregated at ResearchBlogging.org, which discuss peer-reviewed articles and provide full bibliographic references. Articles reviewed in these blogs therefore receive "blog citations." We hypothesized that articles receiving blog citations close to their publication time receive more journal citations later than the articles in the same journal published in the same year that did not receive such blog citations. Statistically significant evidence for articles published in 2009 and 2010 support this hypothesis for seven of 12 journals (58%) in 2009 and 13 of 19 journals (68%) in 2010. We suggest, based on these results, that blog citations can be used as an alternative metric source.
  7. Maflahi, N.; Thelwall, M.: When are readership counts as useful as citation counts? : Scopus versus Mendeley for LIS journals (2016) 0.01
    0.0077595054 = product of:
      0.031038022 = sum of:
        0.031038022 = weight(_text_:data in 2495) [ClassicSimilarity], result of:
          0.031038022 = score(doc=2495,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 2495, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
      0.25 = coord(1/4)
    
    Abstract
    In theory, articles can attract readers on the social reference sharing site Mendeley before they can attract citations, so Mendeley altmetrics could provide early indications of article impact. This article investigates the influence of time on the number of Mendeley readers of an article through a theoretical discussion and an investigation into the relationship between counts of readers of, and citations to, 4 general library and information science (LIS) journals. For this discipline, it takes about 7 years for articles to attract as many Scopus citations as Mendeley readers, and after this the Spearman correlation between readers and citers is stable at about 0.6 for all years. This suggests that Mendeley readership counts may be useful impact indicators for both newer and older articles. The lack of dates for individual Mendeley article readers and an unknown bias toward more recent articles mean that readership data should be normalized individually by year, however, before making any comparisons between articles published in different years.
  8. Thelwall, M.: ¬A comparison of link and URL citation counting (2011) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 4533) [ClassicSimilarity], result of:
          0.02586502 = score(doc=4533,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 4533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - Link analysis is an established topic within webometrics. It normally uses counts of links between sets of web sites or to sets of web sites. These link counts are derived from web crawlers or commercial search engines with the latter being the only alternative for some investigations. This paper compares link counts with URL citation counts in order to assess whether the latter could be a replacement for the former if the major search engines withdraw their advanced hyperlink search facilities. Design/methodology/approach - URL citation counts are compared with link counts for a variety of data sets used in previous webometric studies. Findings - The results show a high degree of correlation between the two but with URL citations being much less numerous, at least outside academia and business. Research limitations/implications - The results cover a small selection of 15 case studies and so the findings are only indicative. Significant differences between results indicate that the difference between link counts and URL citation counts will vary between webometric studies. Practical implications - Should link searches be withdrawn, then link analyses of less well linked non-academic, non-commercial sites would be seriously weakened, although citations based on e-mail addresses could help to make citations more numerous than links for some business and academic contexts. Originality/value - This is the first systematic study of the difference between link counts and URL citation counts in a variety of contexts and it shows that there are significant differences between the two.
  9. Thelwall, M.; Sud, P.: ¬A comparison of methods for collecting web citation data for academic organizations (2011) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 4626) [ClassicSimilarity], result of:
          0.02586502 = score(doc=4626,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 4626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
      0.25 = coord(1/4)
    
  10. Larivière, V.; Sugimoto, C.R.; Macaluso, B.; Milojevi´c, S.; Cronin, B.; Thelwall, M.: arXiv E-prints and the journal of record : an analysis of roles and relationships (2014) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 1285) [ClassicSimilarity], result of:
          0.02586502 = score(doc=1285,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 1285, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1285)
      0.25 = coord(1/4)
    
    Abstract
    Since its creation in 1991, arXiv has become central to the diffusion of research in a number of fields. Combining data from the entirety of arXiv and the Web of Science (WoS), this article investigates (a) the proportion of papers across all disciplines that are on arXiv and the proportion of arXiv papers that are in the WoS, (b) the elapsed time between arXiv submission and journal publication, and (c) the aging characteristics and scientific impact of arXiv e-prints and their published version. It shows that the proportion of WoS papers found on arXiv varies across the specialties of physics and mathematics, and that only a few specialties make extensive use of the repository. Elapsed time between arXiv submission and journal publication has shortened but remains longer in mathematics than in physics. In physics, mathematics, as well as in astronomy and astrophysics, arXiv versions are cited more promptly and decay faster than WoS papers. The arXiv versions of papers-both published and unpublished-have lower citation rates than published papers, although there is almost no difference in the impact of the arXiv versions of published and unpublished papers.
  11. Mohammadi, E.; Thelwall, M.; Kousha, K.: Can Mendeley bookmarks reflect readership? : a survey of user motivations (2016) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 2897) [ClassicSimilarity], result of:
          0.02586502 = score(doc=2897,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 2897, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2897)
      0.25 = coord(1/4)
    
    Abstract
    Although Mendeley bookmarking counts appear to correlate moderately with conventional citation metrics, it is not known whether academic publications are bookmarked in Mendeley in order to be read or not. Without this information, it is not possible to give a confident interpretation of altmetrics derived from Mendeley. In response, a survey of 860 Mendeley users shows that it is reasonable to use Mendeley bookmarking counts as an indication of readership because most (55%) users with a Mendeley library had read or intended to read at least half of their bookmarked publications. This was true across all broad areas of scholarship except for the arts and humanities (42%). About 85% of the respondents also declared that they bookmarked articles in Mendeley to cite them in their publications, but some also bookmark articles for use in professional (50%), teaching (25%), and educational activities (13%). Of course, it is likely that most readers do not record articles in Mendeley and so these data do not represent all readers. In conclusion, Mendeley bookmark counts seem to be indicators of readership leading to a combination of scholarly impact and wider professional impact.
  12. Thelwall, M.: Web indicators for research evaluation : a practical guide (2016) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 3384) [ClassicSimilarity], result of:
          0.02586502 = score(doc=3384,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 3384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
      0.25 = coord(1/4)
    
    Abstract
    In recent years there has been an increasing demand for research evaluation within universities and other research-based organisations. In parallel, there has been an increasing recognition that traditional citation-based indicators are not able to reflect the societal impacts of research and are slow to appear. This has led to the creation of new indicators for different types of research impact as well as timelier indicators, mainly derived from the Web. These indicators have been called altmetrics, webometrics or just web metrics. This book describes and evaluates a range of web indicators for aspects of societal or scholarly impact, discusses the theory and practice of using and evaluating web indicators for research assessment and outlines practical strategies for obtaining many web indicators. In addition to describing impact indicators for traditional scholarly outputs, such as journal articles and monographs, it also covers indicators for videos, datasets, software and other non-standard scholarly outputs. The book describes strategies to analyse web indicators for individual publications as well as to compare the impacts of groups of publications. The practical part of the book includes descriptions of how to use the free software Webometric Analyst to gather and analyse web data. This book is written for information science undergraduate and Master?s students that are learning about alternative indicators or scientometrics as well as Ph.D. students and other researchers and practitioners using indicators to help assess research impact or to study scholarly communication.
  13. Kousha, K.; Thelwall, M.: Are wikipedia citations important evidence of the impact of scholarly articles and books? (2017) 0.01
    0.006466255 = product of:
      0.02586502 = sum of:
        0.02586502 = weight(_text_:data in 3440) [ClassicSimilarity], result of:
          0.02586502 = score(doc=3440,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 3440, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3440)
      0.25 = coord(1/4)
    
    Abstract
    Individual academics and research evaluators often need to assess the value of published research. Although citation counts are a recognized indicator of scholarly impact, alternative data is needed to provide evidence of other types of impact, including within education and wider society. Wikipedia is a logical choice for both of these because the role of a general encyclopaedia is to be an understandable repository of facts about a diverse array of topics and hence it may cite research to support its claims. To test whether Wikipedia could provide new evidence about the impact of scholarly research, this article counted citations to 302,328 articles and 18,735 monographs in English indexed by Scopus in the period 2005 to 2012. The results show that citations from Wikipedia to articles are too rare for most research evaluation purposes, with only 5% of articles being cited in all fields. In contrast, a third of monographs have at least one citation from Wikipedia, with the most in the arts and humanities. Hence, Wikipedia citations can provide extra impact evidence for academic monographs. Nevertheless, the results may be relatively easily manipulated and so Wikipedia is not recommended for evaluations affecting stakeholder interests.
  14. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.00
    0.0047583506 = product of:
      0.019033402 = sum of:
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.038066804 = score(doc=2856,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    19. 3.2016 12:22:00
  15. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.00
    0.0047583506 = product of:
      0.019033402 = sum of:
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.038066804 = score(doc=3211,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    16.11.2016 11:07:22
  16. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.00
    0.0047583506 = product of:
      0.019033402 = sum of:
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.038066804 = score(doc=4291,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    28. 7.2018 10:00:22
  17. Thelwall, M.: Are Mendeley reader counts high enough for research evaluations when articles are published? (2017) 0.00
    0.0039652926 = product of:
      0.01586117 = sum of:
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 3806) [ClassicSimilarity], result of:
              0.03172234 = score(doc=3806,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 3806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3806)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22