Search (23 results, page 1 of 2)

  • × author_ss:"Thelwall, M."
  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  1. Thelwall, M.: Web indicators for research evaluation : a practical guide (2016) 0.04
    0.044642597 = product of:
      0.066963896 = sum of:
        0.013336393 = weight(_text_:on in 3384) [ClassicSimilarity], result of:
          0.013336393 = score(doc=3384,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 3384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
        0.053627502 = product of:
          0.107255004 = sum of:
            0.107255004 = weight(_text_:demand in 3384) [ClassicSimilarity], result of:
              0.107255004 = score(doc=3384,freq=2.0), product of:
                0.31127608 = queryWeight, product of:
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.04990557 = queryNorm
                0.3445655 = fieldWeight in 3384, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3384)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In recent years there has been an increasing demand for research evaluation within universities and other research-based organisations. In parallel, there has been an increasing recognition that traditional citation-based indicators are not able to reflect the societal impacts of research and are slow to appear. This has led to the creation of new indicators for different types of research impact as well as timelier indicators, mainly derived from the Web. These indicators have been called altmetrics, webometrics or just web metrics. This book describes and evaluates a range of web indicators for aspects of societal or scholarly impact, discusses the theory and practice of using and evaluating web indicators for research assessment and outlines practical strategies for obtaining many web indicators. In addition to describing impact indicators for traditional scholarly outputs, such as journal articles and monographs, it also covers indicators for videos, datasets, software and other non-standard scholarly outputs. The book describes strategies to analyse web indicators for individual publications as well as to compare the impacts of groups of publications. The practical part of the book includes descriptions of how to use the free software Webometric Analyst to gather and analyse web data. This book is written for information science undergraduate and Master?s students that are learning about alternative indicators or scientometrics as well as Ph.D. students and other researchers and practitioners using indicators to help assess research impact or to study scholarly communication.
    Series
    Synthesis lectures on information concepts, retrieval, and services; 52
  2. Thelwall, M.: Are Mendeley reader counts high enough for research evaluations when articles are published? (2017) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 3806) [ClassicSimilarity], result of:
          0.01886051 = score(doc=3806,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 3806, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3806)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 3806) [ClassicSimilarity], result of:
              0.03380758 = score(doc=3806,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 3806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3806)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose Mendeley reader counts have been proposed as early indicators for the impact of academic publications. The purpose of this paper is to assess whether there are enough Mendeley readers for research evaluation purposes during the month when an article is first published. Design/methodology/approach Average Mendeley reader counts were compared to the average Scopus citation counts for 104,520 articles from ten disciplines during the second half of 2016. Findings Articles attracted, on average, between 0.1 and 0.8 Mendeley readers per article in the month in which they first appeared in Scopus. This is about ten times more than the average Scopus citation count. Research limitations/implications Other disciplines may use Mendeley more or less than the ten investigated here. The results are dependent on Scopus's indexing practices, and Mendeley reader counts can be manipulated and have national and seniority biases. Practical implications Mendeley reader counts during the month of publication are more powerful than Scopus citations for comparing the average impacts of groups of documents but are not high enough to differentiate between the impacts of typical individual articles. Originality/value This is the first multi-disciplinary and systematic analysis of Mendeley reader counts from the publication month of an article.
    Date
    20. 1.2015 18:30:22
  3. Haustein, S.; Peters, I.; Sugimoto, C.R.; Thelwall, M.; Larivière, V.: Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature (2014) 0.01
    0.009940362 = product of:
      0.029821085 = sum of:
        0.029821085 = weight(_text_:on in 1229) [ClassicSimilarity], result of:
          0.029821085 = score(doc=1229,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.271686 = fieldWeight in 1229, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1229)
      0.33333334 = coord(1/3)
    
    Abstract
    Data collected by social media platforms have been introduced as new sources for indicators to help measure the impact of scholarly research in ways that are complementary to traditional citation analysis. Data generated from social media activities can be used to reflect broad types of impact. This article aims to provide systematic evidence about how often Twitter is used to disseminate information about journal articles in the biomedical sciences. The analysis is based on 1.4 million documents covered by both PubMed and Web of Science and published between 2010 and 2012. The number of tweets containing links to these documents was analyzed and compared to citations to evaluate the degree to which certain journals, disciplines, and specialties were represented on Twitter and how far tweets correlate with citation impact. With less than 10% of PubMed articles mentioned on Twitter, its uptake is low in general but differs between journals and specialties. Correlations between tweets and citations are low, implying that impact metrics based on tweets are different from those based on citations. A framework using the coverage of articles and the correlation between Twitter mentions and citations is proposed to facilitate the evaluation of novel social-media-based metrics.
  4. Shema, H.; Bar-Ilan, J.; Thelwall, M.: How is research blogged? : A content analysis approach (2015) 0.01
    0.0076997704 = product of:
      0.02309931 = sum of:
        0.02309931 = weight(_text_:on in 1863) [ClassicSimilarity], result of:
          0.02309931 = score(doc=1863,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21044704 = fieldWeight in 1863, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1863)
      0.33333334 = coord(1/3)
    
    Abstract
    Blogs that cite academic articles have emerged as a potential source of alternative impact metrics for the visibility of the blogged articles. Nevertheless, to evaluate more fully the value of blog citations, it is necessary to investigate whether research blogs focus on particular types of articles or give new perspectives on scientific discourse. Therefore, we studied the characteristics of peer-reviewed references in blogs and the typical content of blog posts to gain insight into bloggers' motivations. The sample consisted of 391 blog posts from 2010 to 2012 in Researchblogging.org's health category. The bloggers mostly cited recent research articles or reviews from top multidisciplinary and general medical journals. Using content analysis methods, we created a general classification scheme for blog post content with 10 major topic categories, each with several subcategories. The results suggest that health research bloggers rarely self-cite and that the vast majority of their blog posts (90%) include a general discussion of the issue covered in the article, with more than one quarter providing health-related advice based on the article(s) covered. These factors suggest a genuine attempt to engage with a wider, nonacademic audience. Nevertheless, almost 30% of the posts included some criticism of the issues being discussed.
  5. Didegah, F.; Thelwall, M.: Determinants of research citation impact in nanoscience and nanotechnology (2013) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 737) [ClassicSimilarity], result of:
          0.02263261 = score(doc=737,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 737, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=737)
      0.33333334 = coord(1/3)
    
    Abstract
    This study investigates a range of metrics available when a nanoscience and nanotechnology article is published to see which metrics correlate more with the number of citations to the article. It also introduces the degree of internationality of journals and references as new metrics for this purpose. The journal impact factor; the impact of references; the internationality of authors, journals, and references; and the number of authors, institutions, and references were all calculated for papers published in nanoscience and nanotechnology journals in the Web of Science from 2007 to 2009. Using a zero-inflated negative binomial regression model on the data set, the impact factor of the publishing journal and the citation impact of the cited references were found to be the most effective determinants of citation counts in all four time periods. In the entire 2007 to 2009 period, apart from journal internationality and author numbers and internationality, all other predictor variables had significant effects on citation counts.
  6. Maflahi, N.; Thelwall, M.: When are readership counts as useful as citation counts? : Scopus versus Mendeley for LIS journals (2016) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 2495) [ClassicSimilarity], result of:
          0.02263261 = score(doc=2495,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 2495, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
      0.33333334 = coord(1/3)
    
    Abstract
    In theory, articles can attract readers on the social reference sharing site Mendeley before they can attract citations, so Mendeley altmetrics could provide early indications of article impact. This article investigates the influence of time on the number of Mendeley readers of an article through a theoretical discussion and an investigation into the relationship between counts of readers of, and citations to, 4 general library and information science (LIS) journals. For this discipline, it takes about 7 years for articles to attract as many Scopus citations as Mendeley readers, and after this the Spearman correlation between readers and citers is stable at about 0.6 for all years. This suggests that Mendeley readership counts may be useful impact indicators for both newer and older articles. The lack of dates for individual Mendeley article readers and an unknown bias toward more recent articles mean that readership data should be normalized individually by year, however, before making any comparisons between articles published in different years.
  7. Kousha, K.; Thelwall, M.: Can Amazon.com reviews help to assess the wider impacts of books? (2016) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 2768) [ClassicSimilarity], result of:
          0.02263261 = score(doc=2768,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 2768, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2768)
      0.33333334 = coord(1/3)
    
    Abstract
    Although citation counts are often used to evaluate the research impact of academic publications, they are problematic for books that aim for educational or cultural impact. To fill this gap, this article assesses whether a number of simple metrics derived from Amazon.com reviews of academic books could provide evidence of their impact. Based on a set of 2,739 academic monographs from 2008 and a set of 1,305 best-selling books in 15 Amazon.com academic subject categories, the existence of significant but low or moderate correlations between citations and numbers of reviews, combined with other evidence, suggests that online book reviews tend to reflect the wider popularity of a book rather than its academic impact, although there are substantial disciplinary differences. Metrics based on online reviews are therefore recommended for the evaluation of books that aim at a wide audience inside or outside academia when it is important to capture the broader impacts of educational or cultural activities and when they cannot be manipulated in advance of the evaluation.
  8. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.01
    0.0067615155 = product of:
      0.020284547 = sum of:
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.040569093 = score(doc=2856,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    19. 3.2016 12:22:00
  9. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.01
    0.0067615155 = product of:
      0.020284547 = sum of:
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.040569093 = score(doc=3211,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16.11.2016 11:07:22
  10. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.01
    0.0067615155 = product of:
      0.020284547 = sum of:
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.040569093 = score(doc=4291,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    28. 7.2018 10:00:22
  11. Larivière, V.; Sugimoto, C.R.; Macaluso, B.; Milojevi´c, S.; Cronin, B.; Thelwall, M.: arXiv E-prints and the journal of record : an analysis of roles and relationships (2014) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 1285) [ClassicSimilarity], result of:
          0.01886051 = score(doc=1285,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 1285, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1285)
      0.33333334 = coord(1/3)
    
    Abstract
    Since its creation in 1991, arXiv has become central to the diffusion of research in a number of fields. Combining data from the entirety of arXiv and the Web of Science (WoS), this article investigates (a) the proportion of papers across all disciplines that are on arXiv and the proportion of arXiv papers that are in the WoS, (b) the elapsed time between arXiv submission and journal publication, and (c) the aging characteristics and scientific impact of arXiv e-prints and their published version. It shows that the proportion of WoS papers found on arXiv varies across the specialties of physics and mathematics, and that only a few specialties make extensive use of the repository. Elapsed time between arXiv submission and journal publication has shortened but remains longer in mathematics than in physics. In physics, mathematics, as well as in astronomy and astrophysics, arXiv versions are cited more promptly and decay faster than WoS papers. The arXiv versions of papers-both published and unpublished-have lower citation rates than published papers, although there is almost no difference in the impact of the arXiv versions of published and unpublished papers.
  12. Thelwall, M.; Maflahi, N.: Are scholarly articles disproportionately read in their own country? : An analysis of mendeley readers (2015) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 1850) [ClassicSimilarity], result of:
          0.01886051 = score(doc=1850,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 1850, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1850)
      0.33333334 = coord(1/3)
    
    Abstract
    International collaboration tends to result in more highly cited research and, partly as a result of this, many research funding schemes are specifically international in scope. Nevertheless, it is not clear whether this citation advantage is the result of higher quality research or due to other factors, such as a larger audience for the publications. To test whether the apparent advantage of internationally collaborative research may be due to additional interest in articles from the countries of the authors, this article assesses the extent to which the national affiliations of the authors of articles affect the national affiliations of their Mendeley readers. Based on English-language Web of Science articles in 10 fields from science, medicine, social science, and the humanities, the results of statistical models comparing author and reader affiliations suggest that, in most fields, Mendeley users are disproportionately readers of articles authored from within their own country. In addition, there are several cases in which Mendeley users from certain countries tend to ignore articles from specific other countries, although it is not clear whether this reflects national biases or different national specialisms within a field. In conclusion, research funders should not incentivize international collaboration on the basis that it is, in general, higher quality because its higher impact may be primarily due to its larger audience. Moreover, authors should guard against national biases in their reading to select only the best and most relevant publications to inform their research.
  13. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.01
    0.0056345966 = product of:
      0.01690379 = sum of:
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.03380758 = score(doc=57,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    6. 4.2012 18:16:22
  14. Thelwall, M.; Klitkou, A.; Verbeek, A.; Stuart, D.; Vincent, C.: Policy-relevant Webometrics for individual scientific fields (2010) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 3574) [ClassicSimilarity], result of:
          0.016003672 = score(doc=3574,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 3574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3574)
      0.33333334 = coord(1/3)
    
    Abstract
    Despite over 10 years of research there is no agreement on the most suitable roles for Webometric indicators in support of research policy and almost no field-based Webometrics. This article partly fills these gaps by analyzing the potential of policy-relevant Webometrics for individual scientific fields with the help of 4 case studies. Although Webometrics cannot provide robust indicators of knowledge flows or research impact, it can provide some evidence of networking and mutual awareness. The scope of Webometrics is also relatively wide, including not only research organizations and firms but also intermediary groups like professional associations, Web portals, and government agencies. Webometrics can, therefore, provide evidence about the research process to compliment peer review, bibliometric, and patent indicators: tracking the early, mainly prepublication development of new fields and research funding initiatives, assessing the role and impact of intermediary organizations and the need for new ones, and monitoring the extent of mutual awareness in particular research areas.
  15. Shema, H.; Bar-Ilan, J.; Thelwall, M.: Do blog citations correlate with a higher number of future citations? : Research blogs as a potential source for alternative metrics (2014) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 1258) [ClassicSimilarity], result of:
          0.016003672 = score(doc=1258,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 1258, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1258)
      0.33333334 = coord(1/3)
    
    Abstract
    Journal-based citations are an important source of data for impact indices. However, the impact of journal articles extends beyond formal scholarly discourse. Measuring online scholarly impact calls for new indices, complementary to the older ones. This article examines a possible alternative metric source, blog posts aggregated at ResearchBlogging.org, which discuss peer-reviewed articles and provide full bibliographic references. Articles reviewed in these blogs therefore receive "blog citations." We hypothesized that articles receiving blog citations close to their publication time receive more journal citations later than the articles in the same journal published in the same year that did not receive such blog citations. Statistically significant evidence for articles published in 2009 and 2010 support this hypothesis for seven of 12 journals (58%) in 2009 and 13 of 19 journals (68%) in 2010. We suggest, based on these results, that blog citations can be used as an alternative metric source.
  16. Thelwall, M.: Mendeley readership altmetrics for medical articles : an analysis of 45 fields (2016) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 3055) [ClassicSimilarity], result of:
          0.016003672 = score(doc=3055,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 3055, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3055)
      0.33333334 = coord(1/3)
    
    Abstract
    Medical research is highly funded and often expensive and so is particularly important to evaluate effectively. Nevertheless, citation counts may accrue too slowly for use in some formal and informal evaluations. It is therefore important to investigate whether alternative metrics could be used as substitutes. This article assesses whether one such altmetric, Mendeley readership counts, correlates strongly with citation counts across all medical fields, whether the relationship is stronger if student readers are excluded, and whether they are distributed similarly to citation counts. Based on a sample of 332,975 articles from 2009 in 45 medical fields in Scopus, citation counts correlated strongly (about 0.7; 78% of articles had at least one reader) with Mendeley readership counts (from the new version 1 applications programming interface [API]) in almost all fields, with one minor exception, and the correlations tended to decrease slightly when student readers were excluded. Readership followed either a lognormal or a hooked power law distribution, whereas citations always followed a hooked power law, showing that the two may have underlying differences.
  17. Orduna-Malea, E.; Thelwall, M.; Kousha, K.: Web citations in patents : evidence of technological impact? (2017) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 3764) [ClassicSimilarity], result of:
          0.016003672 = score(doc=3764,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 3764, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3764)
      0.33333334 = coord(1/3)
    
    Abstract
    Patents sometimes cite webpages either as general background to the problem being addressed or to identify prior publications that limit the scope of the patent granted. Counts of the number of patents citing an organization's website may therefore provide an indicator of its technological capacity or relevance. This article introduces methods to extract URL citations from patents and evaluates the usefulness of counts of patent web citations as a technology indicator. An analysis of patents citing 200 US universities or 177 UK universities found computer science and engineering departments to be frequently cited, as well as research-related webpages, such as Wikipedia, YouTube, or the Internet Archive. Overall, however, patent URL citations seem to be frequent enough to be useful for ranking major US and the top few UK universities if popular hosted subdomains are filtered out, but the hit count estimates on the first search engine results page should not be relied upon for accuracy.
  18. Sud, P.; Thelwall, M.: Not all international collaboration is beneficial : the Mendeley readership and citation impact of biochemical research collaboration (2016) 0.01
    0.005029469 = product of:
      0.015088406 = sum of:
        0.015088406 = weight(_text_:on in 3048) [ClassicSimilarity], result of:
          0.015088406 = score(doc=3048,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.13746344 = fieldWeight in 3048, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=3048)
      0.33333334 = coord(1/3)
    
    Abstract
    This study aims to identify the way researchers collaborate with other researchers in the course of the scientific research life cycle and provide information to the designers of e-Science and e-Research implementations. On the basis of in-depth interviews with and on-site observations of 24 scientists and a follow-up focus group interview in the field of bioscience/nanoscience and technology in Korea, we examined scientific collaboration using the framework of the scientific research life cycle. We attempt to explain the major motiBiochemistry is a highly funded research area that is typified by large research teams and is important for many areas of the life sciences. This article investigates the citation impact and Mendeley readership impact of biochemistry research from 2011 in the Web of Science according to the type of collaboration involved. Negative binomial regression models are used that incorporate, for the first time, the inclusion of specific countries within a team. The results show that, holding other factors constant, larger teams robustly associate with higher impact research, but including additional departments has no effect and adding extra institutions tends to reduce the impact of research. Although international collaboration is apparently not advantageous in general, collaboration with the United States, and perhaps also with some other countries, seems to increase impact. In contrast, collaborations with some other nations seems to decrease impact, although both findings could be due to factors such as differing national proportions of excellent researchers. As a methodological implication, simpler statistical models would find international collaboration to be generally beneficial and so it is important to take into account specific countries when examining collaboration.t only in the beginning phase of the cycle. For communication and information-sharing practices, scientists continue to favor traditional means of communication for security reasons. Barriers to collaboration throughout the phases included different priorities, competitive tensions, and a hierarchical culture among collaborators, whereas credit sharing was a barrier in the research product phase.
  19. Thelwall, M.: ¬A comparison of link and URL citation counting (2011) 0.00
    0.0044454644 = product of:
      0.013336393 = sum of:
        0.013336393 = weight(_text_:on in 4533) [ClassicSimilarity], result of:
          0.013336393 = score(doc=4533,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 4533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - Link analysis is an established topic within webometrics. It normally uses counts of links between sets of web sites or to sets of web sites. These link counts are derived from web crawlers or commercial search engines with the latter being the only alternative for some investigations. This paper compares link counts with URL citation counts in order to assess whether the latter could be a replacement for the former if the major search engines withdraw their advanced hyperlink search facilities. Design/methodology/approach - URL citation counts are compared with link counts for a variety of data sets used in previous webometric studies. Findings - The results show a high degree of correlation between the two but with URL citations being much less numerous, at least outside academia and business. Research limitations/implications - The results cover a small selection of 15 case studies and so the findings are only indicative. Significant differences between results indicate that the difference between link counts and URL citation counts will vary between webometric studies. Practical implications - Should link searches be withdrawn, then link analyses of less well linked non-academic, non-commercial sites would be seriously weakened, although citations based on e-mail addresses could help to make citations more numerous than links for some business and academic contexts. Originality/value - This is the first systematic study of the difference between link counts and URL citation counts in a variety of contexts and it shows that there are significant differences between the two.
  20. Mohammadi, E.; Thelwall, M.; Haustein, S.; Larivière, V.: Who reads research articles? : an altmetrics analysis of Mendeley user categories (2015) 0.00
    0.0044454644 = product of:
      0.013336393 = sum of:
        0.013336393 = weight(_text_:on in 2162) [ClassicSimilarity], result of:
          0.013336393 = score(doc=2162,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 2162, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2162)
      0.33333334 = coord(1/3)
    
    Abstract
    Little detailed information is known about who reads research articles and the contexts in which research articles are read. Using data about people who register in Mendeley as readers of articles, this article explores different types of users of Clinical Medicine, Engineering and Technology, Social Science, Physics, and Chemistry articles inside and outside academia. The majority of readers for all disciplines were PhD students, postgraduates, and postdocs but other types of academics were also represented. In addition, many Clinical Medicine articles were read by medical professionals. The highest correlations between citations and Mendeley readership counts were found for types of users who often authored academic articles, except for associate professors in some sub-disciplines. This suggests that Mendeley readership can reflect usage similar to traditional citation impact if the data are restricted to readers who are also authors without the delay of impact measured by citation counts. At the same time, Mendeley statistics can also reveal the hidden impact of some research articles, such as educational value for nonauthor users inside academia or the impact of research articles on practice for readers outside academia.