Search (36 results, page 1 of 2)

  • × author_ss:"Thelwall, M."
  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  1. Thelwall, M.: Web indicators for research evaluation : a practical guide (2016) 0.02
    0.0153058935 = product of:
      0.0714275 = sum of:
        0.04931406 = weight(_text_:web in 3384) [ClassicSimilarity], result of:
          0.04931406 = score(doc=3384,freq=16.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.5099235 = fieldWeight in 3384, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
        0.0071344664 = weight(_text_:information in 3384) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3384,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3384, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
        0.014978974 = weight(_text_:retrieval in 3384) [ClassicSimilarity], result of:
          0.014978974 = score(doc=3384,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 3384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
      0.21428572 = coord(3/14)
    
    Abstract
    In recent years there has been an increasing demand for research evaluation within universities and other research-based organisations. In parallel, there has been an increasing recognition that traditional citation-based indicators are not able to reflect the societal impacts of research and are slow to appear. This has led to the creation of new indicators for different types of research impact as well as timelier indicators, mainly derived from the Web. These indicators have been called altmetrics, webometrics or just web metrics. This book describes and evaluates a range of web indicators for aspects of societal or scholarly impact, discusses the theory and practice of using and evaluating web indicators for research assessment and outlines practical strategies for obtaining many web indicators. In addition to describing impact indicators for traditional scholarly outputs, such as journal articles and monographs, it also covers indicators for videos, datasets, software and other non-standard scholarly outputs. The book describes strategies to analyse web indicators for individual publications as well as to compare the impacts of groups of publications. The practical part of the book includes descriptions of how to use the free software Webometric Analyst to gather and analyse web data. This book is written for information science undergraduate and Master?s students that are learning about alternative indicators or scientometrics as well as Ph.D. students and other researchers and practitioners using indicators to help assess research impact or to study scholarly communication.
    Series
    Synthesis lectures on information concepts, retrieval, and services; 52
  2. Thelwall, M.; Klitkou, A.; Verbeek, A.; Stuart, D.; Vincent, C.: Policy-relevant Webometrics for individual scientific fields (2010) 0.01
    0.014044492 = product of:
      0.06554096 = sum of:
        0.03856498 = weight(_text_:wide in 3574) [ClassicSimilarity], result of:
          0.03856498 = score(doc=3574,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 3574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3574)
        0.020922182 = weight(_text_:web in 3574) [ClassicSimilarity], result of:
          0.020922182 = score(doc=3574,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 3574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3574)
        0.0060537956 = weight(_text_:information in 3574) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=3574,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 3574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3574)
      0.21428572 = coord(3/14)
    
    Abstract
    Despite over 10 years of research there is no agreement on the most suitable roles for Webometric indicators in support of research policy and almost no field-based Webometrics. This article partly fills these gaps by analyzing the potential of policy-relevant Webometrics for individual scientific fields with the help of 4 case studies. Although Webometrics cannot provide robust indicators of knowledge flows or research impact, it can provide some evidence of networking and mutual awareness. The scope of Webometrics is also relatively wide, including not only research organizations and firms but also intermediary groups like professional associations, Web portals, and government agencies. Webometrics can, therefore, provide evidence about the research process to compliment peer review, bibliometric, and patent indicators: tracking the early, mainly prepublication development of new fields and research funding initiatives, assessing the role and impact of intermediary organizations and the need for new ones, and monitoring the extent of mutual awareness in particular research areas.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.7, S.1464-1475
  3. Thelwall, M.; Sud, P.: ¬A comparison of methods for collecting web citation data for academic organizations (2011) 0.01
    0.009804233 = product of:
      0.045753088 = sum of:
        0.017435152 = weight(_text_:web in 4626) [ClassicSimilarity], result of:
          0.017435152 = score(doc=4626,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 4626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
        0.0071344664 = weight(_text_:information in 4626) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=4626,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 4626, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
        0.021183468 = weight(_text_:retrieval in 4626) [ClassicSimilarity], result of:
          0.021183468 = score(doc=4626,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23632148 = fieldWeight in 4626, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
      0.21428572 = coord(3/14)
    
    Abstract
    The primary webometric method for estimating the online impact of an organization is to count links to its website. Link counts have been available from commercial search engines for over a decade but this was set to end by early 2012 and so a replacement is needed. This article compares link counts to two alternative methods: URL citations and organization title mentions. New variations of these methods are also introduced. The three methods are compared against each other using Yahoo!. Two of the three methods (URL citations and organization title mentions) are also compared against each other using Bing. Evidence from a case study of 131 UK universities and 49 US Library and Information Science (LIS) departments suggests that Bing's Hit Count Estimates (HCEs) for popular title searches are not useful for webometric research but that Yahoo!'s HCEs for all three types of search and Bing's URL citation HCEs seem to be consistent. For exact URL counts the results of all three methods in Yahoo! and both methods in Bing are also consistent. Four types of accuracy factors are also introduced and defined: search engine coverage, search engine retrieval variation, search engine retrieval anomalies, and query polysemy.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.8, S.1488-1497
  4. Kousha, K.; Thelwall, M.: Can Amazon.com reviews help to assess the wider impacts of books? (2016) 0.01
    0.006374111 = product of:
      0.044618774 = sum of:
        0.03856498 = weight(_text_:wide in 2768) [ClassicSimilarity], result of:
          0.03856498 = score(doc=2768,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 2768, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=2768)
        0.0060537956 = weight(_text_:information in 2768) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2768,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2768, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2768)
      0.14285715 = coord(2/14)
    
    Abstract
    Although citation counts are often used to evaluate the research impact of academic publications, they are problematic for books that aim for educational or cultural impact. To fill this gap, this article assesses whether a number of simple metrics derived from Amazon.com reviews of academic books could provide evidence of their impact. Based on a set of 2,739 academic monographs from 2008 and a set of 1,305 best-selling books in 15 Amazon.com academic subject categories, the existence of significant but low or moderate correlations between citations and numbers of reviews, combined with other evidence, suggests that online book reviews tend to reflect the wider popularity of a book rather than its academic impact, although there are substantial disciplinary differences. Metrics based on online reviews are therefore recommended for the evaluation of books that aim at a wide audience inside or outside academia when it is important to capture the broader impacts of educational or cultural activities and when they cannot be manipulated in advance of the evaluation.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.566-581
  5. Kousha, K.; Thelwall, M.; Abdoli, M.: ¬The role of online videos in research communication : a content analysis of YouTube videos cited in academic publications (2012) 0.01
    0.005311759 = product of:
      0.037182312 = sum of:
        0.032137483 = weight(_text_:wide in 382) [ClassicSimilarity], result of:
          0.032137483 = score(doc=382,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=382)
        0.0050448296 = weight(_text_:information in 382) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=382,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=382)
      0.14285715 = coord(2/14)
    
    Abstract
    Although there is some evidence that online videos are increasingly used by academics for informal scholarly communication and teaching, the extent to which they are used in published academic research is unknown. This article explores the extent to which YouTube videos are cited in academic publications and whether there are significant broad disciplinary differences in this practice. To investigate, we extracted the URL citations to YouTube videos from academic publications indexed by Scopus. A total of 1,808 Scopus publications cited at least one YouTube video, and there was a steady upward growth in citing online videos within scholarly publications from 2006 to 2011, with YouTube citations being most common within arts and humanities (0.3%) and the social sciences (0.2%). A content analysis of 551 YouTube videos cited by research articles indicated that in science (78%) and in medicine and health sciences (77%), over three fourths of the cited videos had either direct scientific (e.g., laboratory experiments) or scientific-related contents (e.g., academic lectures or education) whereas in the arts and humanities, about 80% of the YouTube videos had art, culture, or history themes, and in the social sciences, about 63% of the videos were related to news, politics, advertisements, and documentaries. This shows both the disciplinary differences and the wide variety of innovative research communication uses found for videos within the different subject areas.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.9, S.1710-1727
  6. Orduna-Malea, E.; Thelwall, M.; Kousha, K.: Web citations in patents : evidence of technological impact? (2017) 0.01
    0.0050917473 = product of:
      0.03564223 = sum of:
        0.029588435 = weight(_text_:web in 3764) [ClassicSimilarity], result of:
          0.029588435 = score(doc=3764,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.3059541 = fieldWeight in 3764, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3764)
        0.0060537956 = weight(_text_:information in 3764) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=3764,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 3764, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3764)
      0.14285715 = coord(2/14)
    
    Abstract
    Patents sometimes cite webpages either as general background to the problem being addressed or to identify prior publications that limit the scope of the patent granted. Counts of the number of patents citing an organization's website may therefore provide an indicator of its technological capacity or relevance. This article introduces methods to extract URL citations from patents and evaluates the usefulness of counts of patent web citations as a technology indicator. An analysis of patents citing 200 US universities or 177 UK universities found computer science and engineering departments to be frequently cited, as well as research-related webpages, such as Wikipedia, YouTube, or the Internet Archive. Overall, however, patent URL citations seem to be frequent enough to be useful for ranking major US and the top few UK universities if popular hosted subdomains are filtered out, but the hit count estimates on the first search engine results page should not be relied upon for accuracy.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1967-1974
  7. Didegah, F.; Thelwall, M.: Determinants of research citation impact in nanoscience and nanotechnology (2013) 0.00
    0.0038537113 = product of:
      0.026975978 = sum of:
        0.020922182 = weight(_text_:web in 737) [ClassicSimilarity], result of:
          0.020922182 = score(doc=737,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=737)
        0.0060537956 = weight(_text_:information in 737) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=737,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=737)
      0.14285715 = coord(2/14)
    
    Abstract
    This study investigates a range of metrics available when a nanoscience and nanotechnology article is published to see which metrics correlate more with the number of citations to the article. It also introduces the degree of internationality of journals and references as new metrics for this purpose. The journal impact factor; the impact of references; the internationality of authors, journals, and references; and the number of authors, institutions, and references were all calculated for papers published in nanoscience and nanotechnology journals in the Web of Science from 2007 to 2009. Using a zero-inflated negative binomial regression model on the data set, the impact factor of the publishing journal and the citation impact of the cited references were found to be the most effective determinants of citation counts in all four time periods. In the entire 2007 to 2009 period, apart from journal internationality and author numbers and internationality, all other predictor variables had significant effects on citation counts.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.5, S.1055-1064
  8. Haustein, S.; Peters, I.; Sugimoto, C.R.; Thelwall, M.; Larivière, V.: Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature (2014) 0.00
    0.0035099457 = product of:
      0.02456962 = sum of:
        0.017435152 = weight(_text_:web in 1229) [ClassicSimilarity], result of:
          0.017435152 = score(doc=1229,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 1229, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1229)
        0.0071344664 = weight(_text_:information in 1229) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=1229,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 1229, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1229)
      0.14285715 = coord(2/14)
    
    Abstract
    Data collected by social media platforms have been introduced as new sources for indicators to help measure the impact of scholarly research in ways that are complementary to traditional citation analysis. Data generated from social media activities can be used to reflect broad types of impact. This article aims to provide systematic evidence about how often Twitter is used to disseminate information about journal articles in the biomedical sciences. The analysis is based on 1.4 million documents covered by both PubMed and Web of Science and published between 2010 and 2012. The number of tweets containing links to these documents was analyzed and compared to citations to evaluate the degree to which certain journals, disciplines, and specialties were represented on Twitter and how far tweets correlate with citation impact. With less than 10% of PubMed articles mentioned on Twitter, its uptake is low in general but differs between journals and specialties. Correlations between tweets and citations are low, implying that impact metrics based on tweets are different from those based on citations. A framework using the coverage of articles and the correlation between Twitter mentions and citations is proposed to facilitate the evaluation of novel social-media-based metrics.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.656-669
  9. Larivière, V.; Sugimoto, C.R.; Macaluso, B.; Milojevi´c, S.; Cronin, B.; Thelwall, M.: arXiv E-prints and the journal of record : an analysis of roles and relationships (2014) 0.00
    0.003211426 = product of:
      0.022479981 = sum of:
        0.017435152 = weight(_text_:web in 1285) [ClassicSimilarity], result of:
          0.017435152 = score(doc=1285,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 1285, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1285)
        0.0050448296 = weight(_text_:information in 1285) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1285,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1285, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1285)
      0.14285715 = coord(2/14)
    
    Abstract
    Since its creation in 1991, arXiv has become central to the diffusion of research in a number of fields. Combining data from the entirety of arXiv and the Web of Science (WoS), this article investigates (a) the proportion of papers across all disciplines that are on arXiv and the proportion of arXiv papers that are in the WoS, (b) the elapsed time between arXiv submission and journal publication, and (c) the aging characteristics and scientific impact of arXiv e-prints and their published version. It shows that the proportion of WoS papers found on arXiv varies across the specialties of physics and mathematics, and that only a few specialties make extensive use of the repository. Elapsed time between arXiv submission and journal publication has shortened but remains longer in mathematics than in physics. In physics, mathematics, as well as in astronomy and astrophysics, arXiv versions are cited more promptly and decay faster than WoS papers. The arXiv versions of papers-both published and unpublished-have lower citation rates than published papers, although there is almost no difference in the impact of the arXiv versions of published and unpublished papers.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.6, S.1157-1169
  10. Thelwall, M.; Maflahi, N.: Are scholarly articles disproportionately read in their own country? : An analysis of mendeley readers (2015) 0.00
    0.003211426 = product of:
      0.022479981 = sum of:
        0.017435152 = weight(_text_:web in 1850) [ClassicSimilarity], result of:
          0.017435152 = score(doc=1850,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 1850, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1850)
        0.0050448296 = weight(_text_:information in 1850) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1850,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1850, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1850)
      0.14285715 = coord(2/14)
    
    Abstract
    International collaboration tends to result in more highly cited research and, partly as a result of this, many research funding schemes are specifically international in scope. Nevertheless, it is not clear whether this citation advantage is the result of higher quality research or due to other factors, such as a larger audience for the publications. To test whether the apparent advantage of internationally collaborative research may be due to additional interest in articles from the countries of the authors, this article assesses the extent to which the national affiliations of the authors of articles affect the national affiliations of their Mendeley readers. Based on English-language Web of Science articles in 10 fields from science, medicine, social science, and the humanities, the results of statistical models comparing author and reader affiliations suggest that, in most fields, Mendeley users are disproportionately readers of articles authored from within their own country. In addition, there are several cases in which Mendeley users from certain countries tend to ignore articles from specific other countries, although it is not clear whether this reflects national biases or different national specialisms within a field. In conclusion, research funders should not incentivize international collaboration on the basis that it is, in general, higher quality because its higher impact may be primarily due to its larger audience. Moreover, authors should guard against national biases in their reading to select only the best and most relevant publications to inform their research.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.6, S.1124-1135
  11. Sud, P.; Thelwall, M.: Not all international collaboration is beneficial : the Mendeley readership and citation impact of biochemical research collaboration (2016) 0.00
    0.0029912062 = product of:
      0.020938443 = sum of:
        0.013948122 = weight(_text_:web in 3048) [ClassicSimilarity], result of:
          0.013948122 = score(doc=3048,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.14422815 = fieldWeight in 3048, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3048)
        0.0069903214 = weight(_text_:information in 3048) [ClassicSimilarity], result of:
          0.0069903214 = score(doc=3048,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1343758 = fieldWeight in 3048, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3048)
      0.14285715 = coord(2/14)
    
    Abstract
    This study aims to identify the way researchers collaborate with other researchers in the course of the scientific research life cycle and provide information to the designers of e-Science and e-Research implementations. On the basis of in-depth interviews with and on-site observations of 24 scientists and a follow-up focus group interview in the field of bioscience/nanoscience and technology in Korea, we examined scientific collaboration using the framework of the scientific research life cycle. We attempt to explain the major motiBiochemistry is a highly funded research area that is typified by large research teams and is important for many areas of the life sciences. This article investigates the citation impact and Mendeley readership impact of biochemistry research from 2011 in the Web of Science according to the type of collaboration involved. Negative binomial regression models are used that incorporate, for the first time, the inclusion of specific countries within a team. The results show that, holding other factors constant, larger teams robustly associate with higher impact research, but including additional departments has no effect and adding extra institutions tends to reduce the impact of research. Although international collaboration is apparently not advantageous in general, collaboration with the United States, and perhaps also with some other countries, seems to increase impact. In contrast, collaborations with some other nations seems to decrease impact, although both findings could be due to factors such as differing national proportions of excellent researchers. As a methodological implication, simpler statistical models would find international collaboration to be generally beneficial and so it is important to take into account specific countries when examining collaboration.t only in the beginning phase of the cycle. For communication and information-sharing practices, scientists continue to favor traditional means of communication for security reasons. Barriers to collaboration throughout the phases included different priorities, competitive tensions, and a hierarchical culture among collaborators, whereas credit sharing was a barrier in the research product phase.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.8, S.1849-1857
  12. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.00
    0.0023701685 = product of:
      0.016591178 = sum of:
        0.00856136 = weight(_text_:information in 2856) [ClassicSimilarity], result of:
          0.00856136 = score(doc=2856,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 2856, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2856)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.024089456 = score(doc=2856,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    This article introduces a new source of evidence of the value of medical-related research: citations from clinical guidelines. These give evidence that research findings have been used to inform the day-to-day practice of medical staff. To identify whether citations from guidelines can give different information from that of traditional citation counts, this article assesses the extent to which references in clinical guidelines tend to be highly cited in the academic literature and highly read in Mendeley. Using evidence from the United Kingdom, references associated with the UK's National Institute of Health and Clinical Excellence (NICE) guidelines tended to be substantially more cited than comparable articles, unless they had been published in the most recent 3 years. Citation counts also seemed to be stronger indicators than Mendeley readership altmetrics. Hence, although presence in guidelines may be particularly useful to highlight the contributions of recently published articles, for older articles citation counts may already be sufficient to recognize their contributions to health in society.
    Date
    19. 3.2016 12:22:00
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.960-966
  13. Thelwall, M.: ¬A comparison of link and URL citation counting (2011) 0.00
    0.0021570409 = product of:
      0.03019857 = sum of:
        0.03019857 = weight(_text_:web in 4533) [ClassicSimilarity], result of:
          0.03019857 = score(doc=4533,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.3122631 = fieldWeight in 4533, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose - Link analysis is an established topic within webometrics. It normally uses counts of links between sets of web sites or to sets of web sites. These link counts are derived from web crawlers or commercial search engines with the latter being the only alternative for some investigations. This paper compares link counts with URL citation counts in order to assess whether the latter could be a replacement for the former if the major search engines withdraw their advanced hyperlink search facilities. Design/methodology/approach - URL citation counts are compared with link counts for a variety of data sets used in previous webometric studies. Findings - The results show a high degree of correlation between the two but with URL citations being much less numerous, at least outside academia and business. Research limitations/implications - The results cover a small selection of 15 case studies and so the findings are only indicative. Significant differences between results indicate that the difference between link counts and URL citation counts will vary between webometric studies. Practical implications - Should link searches be withdrawn, then link analyses of less well linked non-academic, non-commercial sites would be seriously weakened, although citations based on e-mail addresses could help to make citations more numerous than links for some business and academic contexts. Originality/value - This is the first systematic study of the difference between link counts and URL citation counts in a variety of contexts and it shows that there are significant differences between the two.
  14. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.00
    0.002011945 = product of:
      0.014083615 = sum of:
        0.0060537956 = weight(_text_:information in 3211) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=3211,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 3211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.024089456 = score(doc=3211,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Date
    16.11.2016 11:07:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.3036-3050
  15. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.00
    0.002011945 = product of:
      0.014083615 = sum of:
        0.0060537956 = weight(_text_:information in 4291) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=4291,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 4291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4291)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.024089456 = score(doc=4291,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Date
    28. 7.2018 10:00:22
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.8, S.959-973
  16. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.00
    0.0019751405 = product of:
      0.013825983 = sum of:
        0.0071344664 = weight(_text_:information in 57) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=57,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 57, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=57)
        0.0066915164 = product of:
          0.020074548 = sum of:
            0.020074548 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.020074548 = score(doc=57,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Webometric network analyses have been used to map the connectivity of groups of websites to identify clusters, important sites or overall structure. Such analyses have mainly been based upon hyperlink counts, the number of hyperlinks between a pair of websites, although some have used title mentions or URL citations instead. The ability to automatically gather hyperlink counts from Yahoo! ceased in April 2011 and the ability to manually gather such counts was due to cease by early 2012, creating a need for alternatives. This article assesses URL citations and title mentions as possible replacements for hyperlinks in both binary and weighted direct link and co-inlink network diagrams. It also assesses three different types of data for the network connections: hit count estimates, counts of matching URLs, and filtered counts of matching URLs. Results from analyses of U.S. library and information science departments and U.K. universities give evidence that metrics based upon URLs or titles can be appropriate replacements for metrics based upon hyperlinks for both binary and weighted networks, although filtered counts of matching URLs are necessary to give the best results for co-title mention and co-URL citation network diagrams.
    Date
    6. 4.2012 18:16:22
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.4, S.805-816
  17. Thelwall, M.: Are Mendeley reader counts high enough for research evaluations when articles are published? (2017) 0.00
    0.001676621 = product of:
      0.011736346 = sum of:
        0.0050448296 = weight(_text_:information in 3806) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3806,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3806)
        0.0066915164 = product of:
          0.020074548 = sum of:
            0.020074548 = weight(_text_:22 in 3806) [ClassicSimilarity], result of:
              0.020074548 = score(doc=3806,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.19345059 = fieldWeight in 3806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3806)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 69(2017) no.2, S.174-183
  18. Kousha, K.; Thelwall, M.: News stories as evidence for research? : BBC citations from articles, Books, and Wikipedia (2017) 0.00
    7.2068995E-4 = product of:
      0.010089659 = sum of:
        0.010089659 = weight(_text_:information in 3760) [ClassicSimilarity], result of:
          0.010089659 = score(doc=3760,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 3760, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3760)
      0.071428575 = coord(1/14)
    
    Abstract
    Although news stories target the general public and are sometimes inaccurate, they can serve as sources of real-world information for researchers. This article investigates the extent to which academics exploit journalism using content and citation analyses of online BBC News stories cited by Scopus articles. A total of 27,234 Scopus-indexed publications have cited at least one BBC News story, with a steady annual increase. Citations from the arts and humanities (2.8% of publications in 2015) and social sciences (1.5%) were more likely than citations from medicine (0.1%) and science (<0.1%). Surprisingly, half of the sampled Scopus-cited science and technology (53%) and medicine and health (47%) stories were based on academic research, rather than otherwise unpublished information, suggesting that researchers have chosen a lower-quality secondary source for their citations. Nevertheless, the BBC News stories that were most frequently cited by Scopus, Google Books, and Wikipedia introduced new information from many different topics, including politics, business, economics, statistics, and reports about events. Thus, news stories are mediating real-world knowledge into the academic domain, a potential cause for concern.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.2017-2028
  19. Mohammadi , E.; Thelwall, M.: Mendeley readership altmetrics for the social sciences and humanities : research evaluation and knowledge flows (2014) 0.00
    6.241359E-4 = product of:
      0.008737902 = sum of:
        0.008737902 = weight(_text_:information in 2190) [ClassicSimilarity], result of:
          0.008737902 = score(doc=2190,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16796975 = fieldWeight in 2190, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2190)
      0.071428575 = coord(1/14)
    
    Abstract
    Although there is evidence that counting the readers of an article in the social reference site, Mendeley, may help to capture its research impact, the extent to which this is true for different scientific fields is unknown. In this study, we compare Mendeley readership counts with citations for different social sciences and humanities disciplines. The overall correlation between Mendeley readership counts and citations for the social sciences was higher than for the humanities. Low and medium correlations between Mendeley bookmarks and citation counts in all the investigated disciplines suggest that these measures reflect different aspects of research impact. Mendeley data were also used to discover patterns of information flow between scientific fields. Comparing information flows based on Mendeley bookmarking data and cross-disciplinary citation analysis for the disciplines revealed substantial similarities and some differences. Thus, the evidence from this study suggests that Mendeley readership data could be used to help capture knowledge transfer across scientific disciplines, especially for people that read but do not author articles, as well as giving impact evidence at an earlier stage than is possible with citation counts.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.8, S.1627-1638
  20. Thelwall, M.; Kousha, K.: SlideShare presentations, citations, users, and trends : a professional site with academic and educational uses (2017) 0.00
    6.241359E-4 = product of:
      0.008737902 = sum of:
        0.008737902 = weight(_text_:information in 3766) [ClassicSimilarity], result of:
          0.008737902 = score(doc=3766,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16796975 = fieldWeight in 3766, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3766)
      0.071428575 = coord(1/14)
    
    Abstract
    SlideShare is a free social website that aims to help users distribute and find presentations. Owned by LinkedIn since 2012, it targets a professional audience but may give value to scholarship through creating a long-term record of the content of talks. This article tests this hypothesis by analyzing sets of general and scholarly related SlideShare documents using content and citation analysis and popularity statistics reported on the site. The results suggest that academics, students, and teachers are a minority of SlideShare uploaders, especially since 2010, with most documents not being directly related to scholarship or teaching. About two thirds of uploaded SlideShare documents are presentation slides, with the remainder often being files associated with presentations or video recordings of talks. SlideShare is therefore a presentation-centered site with a predominantly professional user base. Although a minority of the uploaded SlideShare documents are cited by, or cite, academic publications, probably too few articles are cited by SlideShare to consider extracting SlideShare citations for research evaluation. Nevertheless, scholars should consider SlideShare to be a potential source of academic and nonacademic information, particularly in library and information science, education, and business.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.8, S.1989-2003