Search (70 results, page 4 of 4)

  • × author_ss:"Thelwall, M."
  • × theme_ss:"Informetrie"
  1. Kousha, K.; Thelwall, M.: Google book search : citation analysis for social science and the humanities (2009) 0.00
    0.0011219748 = product of:
      0.012341722 = sum of:
        0.012341722 = weight(_text_:of in 2946) [ClassicSimilarity], result of:
          0.012341722 = score(doc=2946,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.22855641 = fieldWeight in 2946, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2946)
      0.09090909 = coord(1/11)
    
    Abstract
    In both the social sciences and the humanities, books and monographs play significant roles in research communication. The absence of citations from most books and monographs from the Thomson Reuters/Institute for Scientific Information databases (ISI) has been criticized, but attempts to include citations from or to books in the research evaluation of the social sciences and humanities have not led to widespread adoption. This article assesses whether Google Book Search (GBS) can partially fill this gap by comparing citations from books with citations from journal articles to journal articles in 10 science, social science, and humanities disciplines. Book citations were 31% to 212% of ISI citations and, hence, numerous enough to supplement ISI citations in the social sciences and humanities covered, but not in the sciences (3%-5%), except for computing (46%), due to numerous published conference proceedings. A case study was also made of all 1,923 articles in the 51 information science and library science ISI-indexed journals published in 2003. Within this set, highly book-cited articles tended to receive many ISI citations, indicating a significant relationship between the two types of citation data, but with important exceptions that point to the additional information provided by book citations. In summary, GBS is clearly a valuable new source of citation data for the social sciences and humanities. One practical implication is that book-oriented scholars should consult it for additional citations to their work when applying for promotion and tenure.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1537-1549
  2. Kousha, K.; Thelwall, M.; Rezaie, S.: Assessing the citation impact of books : the role of Google Books, Google Scholar, and Scopus (2011) 0.00
    0.0011219748 = product of:
      0.012341722 = sum of:
        0.012341722 = weight(_text_:of in 4920) [ClassicSimilarity], result of:
          0.012341722 = score(doc=4920,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.22855641 = fieldWeight in 4920, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4920)
      0.09090909 = coord(1/11)
    
    Abstract
    Citation indictors are increasingly used in some subject areas to support peer review in the evaluation of researchers and departments. Nevertheless, traditional journal-based citation indexes may be inadequate for the citation impact assessment of book-based disciplines. This article examines whether online citations from Google Books and Google Scholar can provide alternative sources of citation evidence. To investigate this, we compared the citation counts to 1,000 books submitted to the 2008 U.K. Research Assessment Exercise (RAE) from Google Books and Google Scholar with Scopus citations across seven book-based disciplines (archaeology; law; politics and international studies; philosophy; sociology; history; and communication, cultural, and media studies). Google Books and Google Scholar citations to books were 1.4 and 3.2 times more common than were Scopus citations, and their medians were more than twice and three times as high as were Scopus median citations, respectively. This large number of citations is evidence that in book-oriented disciplines in the social sciences, arts, and humanities, online book citations may be sufficiently numerous to support peer review for research evaluation, at least in the United Kingdom.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.11, S.2147-2164
  3. Maflahi, N.; Thelwall, M.: How quickly do publications get read? : the evolution of mendeley reader counts for new articles (2018) 0.00
    0.0010387468 = product of:
      0.011426214 = sum of:
        0.011426214 = weight(_text_:of in 4015) [ClassicSimilarity], result of:
          0.011426214 = score(doc=4015,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.21160212 = fieldWeight in 4015, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4015)
      0.09090909 = coord(1/11)
    
    Abstract
    Within science, citation counts are widely used to estimate research impact but publication delays mean that they are not useful for recent research. This gap can be filled by Mendeley reader counts, which are valuable early impact indicators for academic articles because they appear before citations and correlate strongly with them. Nevertheless, it is not known how Mendeley readership counts accumulate within the year of publication, and so it is unclear how soon they can be used. In response, this paper reports a longitudinal weekly study of the Mendeley readers of articles in 6 library and information science journals from 2016. The results suggest that Mendeley readers accrue from when articles are first available online and continue to steadily build. For journals with large publication delays, articles can already have substantial numbers of readers by their publication date. Thus, Mendeley reader counts may even be useful as early impact indicators for articles before they have been officially published in a journal issue. If field normalized indicators are needed, then these can be generated when journal issues are published using the online first date.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.1, S.158-167
  4. Thelwall, M.; Levitt, J.M.: National scientific performance evolution patterns : retrenchment, successful expansion, or overextension (2018) 0.00
    0.0010387468 = product of:
      0.011426214 = sum of:
        0.011426214 = weight(_text_:of in 4225) [ClassicSimilarity], result of:
          0.011426214 = score(doc=4225,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.21160212 = fieldWeight in 4225, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4225)
      0.09090909 = coord(1/11)
    
    Abstract
    National governments would like to preside over an expanding and increasingly high-impact science system but are these two goals largely independent or closely linked? This article investigates the relationship between changes in the share of the world's scientific output and changes in relative citation impact for 2.6 million articles from 26 fields in the 25 countries with the most Scopus-indexed journal articles from 1996 to 2015. There is a negative correlation between expansion and relative citation impact, but their relationship varies. China, Spain, Australia, and Poland were successful overall across the 26 fields, expanding both their share of the world's output and its relative citation impact, whereas Japan, France, Sweden, and Israel had decreased shares and relative citation impact. In contrast, the USA, UK, Germany, Italy, Russia, The Netherlands, Switzerland, Finland, and Denmark all enjoyed increased relative citation impact despite a declining share of publications. Finally, India, South Korea, Brazil, Taiwan, and Turkey all experienced sustained expansion but a recent fall in relative citation impact. These results may partly reflect changes in the coverage of Scopus and the selection of fields.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.5, S.720-727
  5. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.00
    9.482418E-4 = product of:
      0.010430659 = sum of:
        0.010430659 = weight(_text_:of in 337) [ClassicSimilarity], result of:
          0.010430659 = score(doc=337,freq=10.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.19316542 = fieldWeight in 337, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=337)
      0.09090909 = coord(1/11)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.7, S.1055-1065
  6. Kousha, K.; Thelwall, M.: ¬An automatic method for extracting citations from Google Books (2015) 0.00
    9.482418E-4 = product of:
      0.010430659 = sum of:
        0.010430659 = weight(_text_:of in 1658) [ClassicSimilarity], result of:
          0.010430659 = score(doc=1658,freq=10.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.19316542 = fieldWeight in 1658, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1658)
      0.09090909 = coord(1/11)
    
    Abstract
    Recent studies have shown that counting citations from books can help scholarly impact assessment and that Google Books (GB) is a useful source of such citation counts, despite its lack of a public citation index. Searching GB for citations produces approximate matches, however, and so its raw results need time-consuming human filtering. In response, this article introduces a method to automatically remove false and irrelevant matches from GB citation searches in addition to introducing refinements to a previous GB manual citation extraction method. The method was evaluated by manual checking of sampled GB results and comparing citations to about 14,500 monographs in the Thomson Reuters Book Citation Index (BKCI) against automatically extracted citations from GB across 24 subject areas. GB citations were 103% to 137% as numerous as BKCI citations in the humanities, except for tourism (72%) and linguistics (91%), 46% to 85% in social sciences, but only 8% to 53% in the sciences. In all cases, however, GB had substantially more citing books than did BKCI, with BKCI's results coming predominantly from journal articles. Moderate correlations between the GB and BKCI citation counts in social sciences and humanities, with most BKCI results coming from journal articles rather than books, suggests that they could measure the different aspects of impact, however.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.2, S.309-320
  7. Kousha, K.; Thelwall, M.: Patent citation analysis with Google (2017) 0.00
    9.482418E-4 = product of:
      0.010430659 = sum of:
        0.010430659 = weight(_text_:of in 3317) [ClassicSimilarity], result of:
          0.010430659 = score(doc=3317,freq=10.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.19316542 = fieldWeight in 3317, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3317)
      0.09090909 = coord(1/11)
    
    Abstract
    Citations from patents to scientific publications provide useful evidence about the commercial impact of academic research, but automatically searchable databases are needed to exploit this connection for large-scale patent citation evaluations. Google covers multiple different international patent office databases but does not index patent citations or allow automatic searches. In response, this article introduces a semiautomatic indirect method via Bing to extract and filter patent citations from Google to academic papers with an overall precision of 98%. The method was evaluated with 322,192 science and engineering Scopus articles from every second year for the period 1996-2012. Although manual Google Patent searches give more results, especially for articles with many patent citations, the difference is not large enough to be a major problem. Within Biomedical Engineering, Biotechnology, and Pharmacology & Pharmaceutics, 7% to 10% of Scopus articles had at least one patent citation but other fields had far fewer, so patent citation analysis is only relevant for a minority of publications. Low but positive correlations between Google Patent citations and Scopus citations across all fields suggest that traditional citation counts cannot substitute for patent citations when evaluating research.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.1, S.48-61
  8. Thelwall, M.: Female citation impact superiority 1996-2018 in six out of seven English-speaking nations (2020) 0.00
    9.482418E-4 = product of:
      0.010430659 = sum of:
        0.010430659 = weight(_text_:of in 5948) [ClassicSimilarity], result of:
          0.010430659 = score(doc=5948,freq=10.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.19316542 = fieldWeight in 5948, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5948)
      0.09090909 = coord(1/11)
    
    Abstract
    Efforts to combat continuing gender inequalities in academia need to be informed by evidence about where differences occur. Citations are relevant as potential evidence in appointment and promotion decisions, but it is unclear whether there have been historical gender differences in average citation impact that might explain the current shortfall of senior female academics. This study investigates the evolution of gender differences in citation impact 1996-2018 for six million articles from seven large English-speaking nations: Australia, Canada, Ireland, Jamaica, New Zealand, UK, and the USA. The results show that a small female citation advantage has been the norm over time for all these countries except the USA, where there has been no practical difference. The female citation advantage is largest, and statistically significant in most years, for Australia and the UK. This suggests that any academic bias against citing female-authored research cannot explain current employment inequalities. Nevertheless, comparisons using recent citation data, or avoiding it altogether, during appointments or promotion may disadvantage females in some countries by underestimating the likely greater impact of their work, especially in the long term.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.8, S.979-990
  9. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Do altmetric scores reflect article quality? : evidence from the UK Research Excellence Framework 2021 (2023) 0.00
    9.482418E-4 = product of:
      0.010430659 = sum of:
        0.010430659 = weight(_text_:of in 947) [ClassicSimilarity], result of:
          0.010430659 = score(doc=947,freq=10.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.19316542 = fieldWeight in 947, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=947)
      0.09090909 = coord(1/11)
    
    Abstract
    Altmetrics are web-based quantitative impact or attention indicators for academic articles that have been proposed to supplement citation counts. This article reports the first assessment of the extent to which mature altmetrics from Altmetric.com and Mendeley associate with individual article quality scores. It exploits expert norm-referenced peer review scores from the UK Research Excellence Framework 2021 for 67,030+ journal articles in all fields 2014-2017/2018, split into 34 broadly field-based Units of Assessment (UoAs). Altmetrics correlated more strongly with research quality than previously found, although less strongly than raw and field normalized Scopus citation counts. Surprisingly, field normalizing citation counts can reduce their strength as a quality indicator for articles in a single field. For most UoAs, Mendeley reader counts are the best altmetric (e.g., three Spearman correlations with quality scores above 0.5), tweet counts are also a moderate strength indicator in eight UoAs (Spearman correlations with quality scores above 0.3), ahead of news (eight correlations above 0.3, but generally weaker), blogs (five correlations above 0.3), and Facebook (three correlations above 0.3) citations, at least in the United Kingdom. In general, altmetrics are the strongest indicators of research quality in the health and physical sciences and weakest in the arts and humanities.
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.5, S.582-593
  10. Thelwall, M.; Kousha, K.: ResearchGate articles : age, discipline, audience size, and impact (2017) 0.00
    8.4813323E-4 = product of:
      0.009329465 = sum of:
        0.009329465 = weight(_text_:of in 3349) [ClassicSimilarity], result of:
          0.009329465 = score(doc=3349,freq=8.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.17277241 = fieldWeight in 3349, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3349)
      0.09090909 = coord(1/11)
    
    Abstract
    The large multidisciplinary academic social website ResearchGate aims to help academics to connect with each other and to publicize their work. Despite its popularity, little is known about the age and discipline of the articles uploaded and viewed in the site and whether publication statistics from the site could be useful impact indicators. In response, this article assesses samples of ResearchGate articles uploaded at specific dates, comparing their views in the site to their Mendeley readers and Scopus-indexed citations. This analysis shows that ResearchGate is dominated by recent articles, which attract about three times as many views as older articles. ResearchGate has uneven coverage of scholarship, with the arts and humanities, health professions, and decision sciences poorly represented and some fields receiving twice as many views per article as others. View counts for uploaded articles have low to moderate positive correlations with both Scopus citations and Mendeley readers, which is consistent with them tending to reflect a wider audience than Scopus-publishing scholars. Hence, for articles uploaded to the site, view counts may give a genuinely new audience indicator.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.2, S.468-479