Search (1 results, page 1 of 1)

  • × author_ss:"Tonkin, E.L."
  • × year_i:[2010 TO 2020}
  1. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.09
    0.08627405 = product of:
      0.1725481 = sum of:
        0.1725481 = product of:
          0.3450962 = sum of:
            0.3450962 = weight(_text_:mining in 4019) [ClassicSimilarity], result of:
              0.3450962 = score(doc=4019,freq=30.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                1.2072251 = fieldWeight in 4019, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4019)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
    LCSH
    Data mining
    RSWK
    Text Mining / Aufsatzsammlung
    Subject
    Text Mining / Aufsatzsammlung
    Data mining
    Theme
    Data Mining