Search (2 results, page 1 of 1)

  • × author_ss:"Wang, F.L."
  1. Wang, F.L.; Yang, C.C.: Mining Web data for Chinese segmentation (2007) 0.00
    0.0021492138 = product of:
      0.019342924 = sum of:
        0.019342924 = product of:
          0.038685847 = sum of:
            0.038685847 = weight(_text_:web in 604) [ClassicSimilarity], result of:
              0.038685847 = score(doc=604,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.40312994 = fieldWeight in 604, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=604)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Modern information retrieval systems use keywords within documents as indexing terms for search of relevant documents. As Chinese is an ideographic character-based language, the words in the texts are not delimited by white spaces. Indexing of Chinese documents is impossible without a proper segmentation algorithm. Many Chinese segmentation algorithms have been proposed in the past. Traditional segmentation algorithms cannot operate without a large dictionary or a large corpus of training data. Nowadays, the Web has become the largest corpus that is ideal for Chinese segmentation. Although most search engines have problems in segmenting texts into proper words, they maintain huge databases of documents and frequencies of character sequences in the documents. Their databases are important potential resources for segmentation. In this paper, we propose a segmentation algorithm by mining Web data with the help of search engines. On the other hand, the Romanized pinyin of Chinese language indicates boundaries of words in the text. Our algorithm is the first to utilize the Romanized pinyin to segmentation. It is the first unified segmentation algorithm for the Chinese language from different geographical areas, and it is also domain independent because of the nature of the Web. Experiments have been conducted on the datasets of a recent Chinese segmentation competition. The results show that our algorithm outperforms the traditional algorithms in terms of precision and recall. Moreover, our algorithm can effectively deal with the problems of segmentation ambiguity, new word (unknown word) detection, and stop words.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
  2. Xie, H.; Li, X.; Wang, T.; Lau, R.Y.K.; Wong, T.-L.; Chen, L.; Wang, F.L.; Li, Q.: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy (2016) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 2671) [ClassicSimilarity], result of:
              0.013840669 = score(doc=2671,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 2671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2671)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    In recent years, there has been a rapid growth of user-generated data in collaborative tagging (a.k.a. folksonomy-based) systems due to the prevailing of Web 2.0 communities. To effectively assist users to find their desired resources, it is critical to understand user behaviors and preferences. Tag-based profile techniques, which model users and resources by a vector of relevant tags, are widely employed in folksonomy-based systems. This is mainly because that personalized search and recommendations can be facilitated by measuring relevance between user profiles and resource profiles. However, conventional measurements neglect the sentiment aspect of user-generated tags. In fact, tags can be very emotional and subjective, as users usually express their perceptions and feelings about the resources by tags. Therefore, it is necessary to take sentiment relevance into account into measurements. In this paper, we present a novel generic framework SenticRank to incorporate various sentiment information to various sentiment-based information for personalized search by user profiles and resource profiles. In this framework, content-based sentiment ranking and collaborative sentiment ranking methods are proposed to obtain sentiment-based personalized ranking. To the best of our knowledge, this is the first work of integrating sentiment information to address the problem of the personalized tag-based search in collaborative tagging systems. Moreover, we compare the proposed sentiment-based personalized search with baselines in the experiments, the results of which have verified the effectiveness of the proposed framework. In addition, we study the influences by popular sentiment dictionaries, and SenticNet is the most prominent knowledge base to boost the performance of personalized search in folksonomy.