Search (4 results, page 1 of 1)

  • × author_ss:"Wang, X."
  • × type_ss:"a"
  • × year_i:[2010 TO 2020}
  1. Jiang, Y.; Zheng, H.-T.; Wang, X.; Lu, B.; Wu, K.: Affiliation disambiguation for constructing semantic digital libraries (2011) 0.06
    0.062547 = product of:
      0.125094 = sum of:
        0.08550187 = weight(_text_:web in 4457) [ClassicSimilarity], result of:
          0.08550187 = score(doc=4457,freq=12.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.5299281 = fieldWeight in 4457, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
        0.03959212 = weight(_text_:search in 4457) [ClassicSimilarity], result of:
          0.03959212 = score(doc=4457,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 4457, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
      0.5 = coord(2/4)
    
    Abstract
    With increasing digital information availability, semantic web technologies have been employed to construct semantic digital libraries in order to ease information comprehension. The use of semantic web enables users to search or visualize resources in a semantic fashion. Semantic web generation is a key process in semantic digital library construction, which converts metadata of digital resources into semantic web data. Many text mining technologies, such as keyword extraction and clustering, have been proposed to generate semantic web data. However, one important type of metadata in publications, called affiliation, is hard to convert into semantic web data precisely because different authors, who have the same affiliation, often express the affiliation in different ways. To address this issue, this paper proposes a clustering method based on normalized compression distance for the purpose of affiliation disambiguation. The experimental results show that our method is able to identify different affiliations that denote the same institutes. The clustering results outperform the well-known k-means clustering method in terms of average precision, F-measure, entropy, and purity.
  2. Wang, X.; Erdelez, S.; Allen, C.; Anderson, B.; Cao, H.; Shyu, C.-R.: Role of domain knowledge in developing user-centered medical-image indexing (2012) 0.01
    0.011664942 = product of:
      0.046659768 = sum of:
        0.046659768 = weight(_text_:search in 4977) [ClassicSimilarity], result of:
          0.046659768 = score(doc=4977,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 4977, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4977)
      0.25 = coord(1/4)
    
    Abstract
    An efficient and robust medical-image indexing procedure should be user-oriented. It is essential to index the images at the right level of description and ensure that the indexed levels match the user's interest level. This study examines 240 medical-image descriptions produced by three different groups of medical-image users (novices, intermediates, and experts) in the area of radiography. This article reports several important findings: First, the effect of domain knowledge has a significant relationship with the use of semantic image attributes in image-users' descriptions. We found that experts employ more high-level image attributes which require high-reasoning or diagnostic knowledge to search for a medical image (Abstract Objects and Scenes) than do novices; novices are more likely to describe some basic objects which do not require much radiological knowledge to search for an image they need (Generic Objects) than are experts. Second, all image users in this study prefer to use image attributes of the semantic levels to represent the image that they desired to find, especially using those specific-level and scene-related attributes. Third, image attributes generated by medical-image users can be mapped to all levels of the pyramid model that was developed to structure visual information. Therefore, the pyramid model could be considered a robust instrument for indexing medical imagery.
  3. Reyes Ayala, B.; Knudson, R.; Chen, J.; Cao, G.; Wang, X.: Metadata records machine translation combining multi-engine outputs with limited parallel data (2018) 0.01
    0.00976978 = product of:
      0.03907912 = sum of:
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 4010) [ClassicSimilarity], result of:
              0.07815824 = score(doc=4010,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 4010, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4010)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  4. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.01
    0.0050237724 = product of:
      0.02009509 = sum of:
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.04019018 = score(doc=1521,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 8.2014 16:52:04