Search (2 results, page 1 of 1)

  • × author_ss:"Wang, X."
  • × type_ss:"a"
  • × year_i:[2020 TO 2030}
  1. Walsh, J.A.; Cobb, P.J.; Fremery, W. de; Golub, K.; Keah, H.; Kim, J.; Kiplang'at, J.; Liu, Y.-H.; Mahony, S.; Oh, S.G.; Sula, C.A.; Underwood, T.; Wang, X.: Digital humanities in the iSchool (2022) 0.01
    0.010745349 = product of:
      0.032236047 = sum of:
        0.032236047 = weight(_text_:management in 463) [ClassicSimilarity], result of:
          0.032236047 = score(doc=463,freq=2.0), product of:
            0.17312427 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.051362853 = queryNorm
            0.18620178 = fieldWeight in 463, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=463)
      0.33333334 = coord(1/3)
    
    Abstract
    The interdisciplinary field known as digital humanities (DH) is represented in various forms in the teaching and research practiced in iSchools. Building on the work of an iSchools organization committee charged with exploring digital humanities curricula, we present findings from a series of related studies exploring aspects of DH teaching, education, and research in iSchools, often in collaboration with other units and disciplines. Through a survey of iSchool programs and an online DH course registry, we investigate the various education models for DH training found in iSchools, followed by a detailed look at DH courses and curricula, explored through analysis of course syllabi and course descriptions. We take a brief look at collaborative disciplines with which iSchools cooperate on DH research projects or in offering DH education. Next, we explore DH careers through an analysis of relevant job advertisements. Finally, we offer some observations about the management and administrative challenges and opportunities related to offering a new iSchool DH program. Our results provide a snapshot of the current state of digital humanities in iSchools which may usefully inform the design and evolution of new DH programs, degrees, and related initiatives.
  2. Song, N.; Cheng, H.; Zhou, H.; Wang, X.: Linking scholarly contents : the design and construction of an argumentation graph (2022) 0.01
    0.0056292685 = product of:
      0.016887804 = sum of:
        0.016887804 = product of:
          0.03377561 = sum of:
            0.03377561 = weight(_text_:system in 1104) [ClassicSimilarity], result of:
              0.03377561 = score(doc=1104,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.20878783 = fieldWeight in 1104, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1104)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this study, we propose a way to link the scholarly contents of scientific papers by constructing a knowledge graph based on the semantic organization of argumentation units and relations in scientific papers. We carried out an argumentation graph data model aimed at linking multiple discourses, and also developed a semantic annotation platform for scientific papers and an argumentation graph visualization system. A construction experiment was performed using 12 articles. The final argumentation graph has 1,262 nodes and 1,628 edges, including 1,628 intra-article relations and 190 inter-article relations. Knowledge evolution representation, strategic reading, and automatic abstracting use cases are presented to demonstrate the application of the argumentation graph. In contrast to existing knowledge graphs used in academic fields, the argumentation graph better supports the organization and representation of scientific paper content and can be used as data infrastructure in scientific knowledge retrieval, reorganization, reasoning, and evolution. Moreover, it supports automatic abstract and strategic reading.