Search (5 results, page 1 of 1)

  • × author_ss:"Wang, X."
  1. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.04
    0.04396772 = product of:
      0.06595158 = sum of:
        0.045167856 = weight(_text_:resources in 1521) [ClassicSimilarity], result of:
          0.045167856 = score(doc=1521,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 1521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=1521)
        0.020783724 = product of:
          0.04156745 = sum of:
            0.04156745 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.04156745 = score(doc=1521,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
  2. Jiang, Y.; Zheng, H.-T.; Wang, X.; Lu, B.; Wu, K.: Affiliation disambiguation for constructing semantic digital libraries (2011) 0.02
    0.021292333 = product of:
      0.063876994 = sum of:
        0.063876994 = weight(_text_:resources in 4457) [ClassicSimilarity], result of:
          0.063876994 = score(doc=4457,freq=4.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.34221917 = fieldWeight in 4457, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
      0.33333334 = coord(1/3)
    
    Abstract
    With increasing digital information availability, semantic web technologies have been employed to construct semantic digital libraries in order to ease information comprehension. The use of semantic web enables users to search or visualize resources in a semantic fashion. Semantic web generation is a key process in semantic digital library construction, which converts metadata of digital resources into semantic web data. Many text mining technologies, such as keyword extraction and clustering, have been proposed to generate semantic web data. However, one important type of metadata in publications, called affiliation, is hard to convert into semantic web data precisely because different authors, who have the same affiliation, often express the affiliation in different ways. To address this issue, this paper proposes a clustering method based on normalized compression distance for the purpose of affiliation disambiguation. The experimental results show that our method is able to identify different affiliations that denote the same institutes. The clustering results outperform the well-known k-means clustering method in terms of average precision, F-measure, entropy, and purity.
  3. Wang, X.; High, A.; Wang, X.; Zhao, K.: Predicting users' continued engagement in online health communities from the quantity and quality of received support (2021) 0.02
    0.015055953 = product of:
      0.045167856 = sum of:
        0.045167856 = weight(_text_:resources in 242) [ClassicSimilarity], result of:
          0.045167856 = score(doc=242,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=242)
      0.33333334 = coord(1/3)
    
    Abstract
    This article presents a rare insight into the migration of municipality record-keeping databases. The migration of a database for preservation purposes poses Online health communities (OHCs) have been major resources for people with similar health concerns to interact with each other. They offer easily accessible platforms for users to seek, receive, and provide supports by posting. Taking the advantage of text mining and machine learning techniques, we identified social support type(s) in each post and a new user's support needs in an OHC. We examined a user's first-time support-seeking experience by measuring both quantity and quality of received support. Our results revealed that the amount and match of received support are positive and significant predictors of new users' continued engagement. Our outcomes can provide insight for designing and managing a sustainable OHC by retaining users.
  4. Reyes Ayala, B.; Knudson, R.; Chen, J.; Cao, G.; Wang, X.: Metadata records machine translation combining multi-engine outputs with limited parallel data (2018) 0.01
    0.012546628 = product of:
      0.037639882 = sum of:
        0.037639882 = weight(_text_:resources in 4010) [ClassicSimilarity], result of:
          0.037639882 = score(doc=4010,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.20165458 = fieldWeight in 4010, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4010)
      0.33333334 = coord(1/3)
    
    Abstract
    One way to facilitate Multilingual Information Access (MLIA) for digital libraries is to generate multilingual metadata records by applying Machine Translation (MT) techniques. Current online MT services are available and affordable, but are not always effective for creating multilingual metadata records. In this study, we implemented 3 different MT strategies and evaluated their performance when translating English metadata records to Chinese and Spanish. These strategies included combining MT results from 3 online MT systems (Google, Bing, and Yahoo!) with and without additional linguistic resources, such as manually-generated parallel corpora, and metadata records in the two target languages obtained from international partners. The open-source statistical MT platform Moses was applied to design and implement the three translation strategies. Human evaluation of the MT results using adequacy and fluency demonstrated that two of the strategies produced higher quality translations than individual online MT systems for both languages. Especially, adding small, manually-generated parallel corpora of metadata records significantly improved translation performance. Our study suggested an effective and efficient MT approach for providing multilingual services for digital collections.
  5. Walsh, J.A.; Cobb, P.J.; Fremery, W. de; Golub, K.; Keah, H.; Kim, J.; Kiplang'at, J.; Liu, Y.-H.; Mahony, S.; Oh, S.G.; Sula, C.A.; Underwood, T.; Wang, X.: Digital humanities in the iSchool (2022) 0.01
    0.005348703 = product of:
      0.016046109 = sum of:
        0.016046109 = product of:
          0.032092217 = sum of:
            0.032092217 = weight(_text_:management in 463) [ClassicSimilarity], result of:
              0.032092217 = score(doc=463,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.18620178 = fieldWeight in 463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=463)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The interdisciplinary field known as digital humanities (DH) is represented in various forms in the teaching and research practiced in iSchools. Building on the work of an iSchools organization committee charged with exploring digital humanities curricula, we present findings from a series of related studies exploring aspects of DH teaching, education, and research in iSchools, often in collaboration with other units and disciplines. Through a survey of iSchool programs and an online DH course registry, we investigate the various education models for DH training found in iSchools, followed by a detailed look at DH courses and curricula, explored through analysis of course syllabi and course descriptions. We take a brief look at collaborative disciplines with which iSchools cooperate on DH research projects or in offering DH education. Next, we explore DH careers through an analysis of relevant job advertisements. Finally, we offer some observations about the management and administrative challenges and opportunities related to offering a new iSchool DH program. Our results provide a snapshot of the current state of digital humanities in iSchools which may usefully inform the design and evolution of new DH programs, degrees, and related initiatives.