Search (6 results, page 1 of 1)

  • × author_ss:"Wang, X."
  1. Wang, X.; Zhang, M.; Fan, W.; Zhao, K.: Understanding the spread of COVID-19 misinformation on social media : the effects of topics and a political leader's nudge (2022) 0.05
    0.050719745 = product of:
      0.15215923 = sum of:
        0.15215923 = weight(_text_:systematic in 549) [ClassicSimilarity], result of:
          0.15215923 = score(doc=549,freq=4.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.5358256 = fieldWeight in 549, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=549)
      0.33333334 = coord(1/3)
    
    Abstract
    The spread of misinformation on social media has become a major societal issue during recent years. In this work, we used the ongoing COVID-19 pandemic as a case study to systematically investigate factors associated with the spread of multi-topic misinformation related to one event on social media based on the heuristic-systematic model. Among factors related to systematic processing of information, we discovered that the topics of a misinformation story matter, with conspiracy theories being the most likely to be retweeted. As for factors related to heuristic processing of information, such as when citizens look up to their leaders during such a crisis, our results demonstrated that behaviors of a political leader, former US President Donald J. Trump, may have nudged people's sharing of COVID-19 misinformation. Outcomes of this study help social media platform and users better understand and prevent the spread of misinformation on social media.
  2. Tan, X.; Luo, X.; Wang, X.; Wang, H.; Hou, X.: Representation and display of digital images of cultural heritage : a semantic enrichment approach (2021) 0.04
    0.03586427 = product of:
      0.10759281 = sum of:
        0.10759281 = weight(_text_:systematic in 455) [ClassicSimilarity], result of:
          0.10759281 = score(doc=455,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.3788859 = fieldWeight in 455, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=455)
      0.33333334 = coord(1/3)
    
    Abstract
    Digital images of cultural heritage (CH) contain rich semantic information. However, today's semantic representations of CH images fail to fully reveal the content entities and context within these vital surrogates. This paper draws on the fields of image research and digital humanities to propose a systematic methodology and a technical route for semantic enrichment of CH digital images. This new methodology systematically applies a series of procedures including: semantic annotation, entity-based enrichment, establishing internal relations, event-centric enrichment, defining hierarchy relations between properties text annotation, and finally, named entity recognition in order to ultimately provide fine-grained contextual semantic content disclosure. The feasibility and advantages of the proposed semantic enrichment methods for semantic representation are demonstrated via a visual display platform for digital images of CH built to represent the Wutai Mountain Map, a typical Dunhuang mural. This study proves that semantic enrichment offers a promising new model for exposing content at a fine-grained level, and establishing a rich semantic network centered on the content of digital images of CH.
  3. Tian, W.; Cai, R.; Fang, Z.; Geng, Y.; Wang, X.; Hu, Z.: Understanding co-corresponding authorship : a bibliometric analysis and detailed overview (2024) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 1196) [ClassicSimilarity], result of:
          0.08966068 = score(doc=1196,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 1196, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1196)
      0.33333334 = coord(1/3)
    
    Abstract
    The phenomenon of co-corresponding authorship is becoming more and more common. To understand the practice of authorship credit sharing among multiple corresponding authors, we comprehensively analyzed the characteristics of the phenomenon of co-corresponding authorships from the perspectives of countries, disciplines, journals, and articles. This researcher was based on a dataset of nearly 8 million articles indexed in the Web of Science, which provides systematic, cross-disciplinary, and large-scale evidence for understanding the phenomenon of co-corresponding authorship for the first time. Our findings reveal that higher proportions of co-corresponding authorship exist in Asian countries, especially in China. From the perspective of disciplines, there is a relatively higher proportion of co-corresponding authorship in the fields of engineering and medicine, while a lower proportion exists in the humanities, social sciences, and computer science fields. From the perspective of journals, high-quality journals usually have higher proportions of co-corresponding authorship. At the level of the article, our findings proved that, compared to articles with a single corresponding author, articles with multiple corresponding authors have a significant citation advantage.
  4. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.03
    0.029550051 = product of:
      0.08865015 = sum of:
        0.08865015 = sum of:
          0.048260607 = weight(_text_:indexing in 1521) [ClassicSimilarity], result of:
            0.048260607 = score(doc=1521,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.2537542 = fieldWeight in 1521, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.046875 = fieldNorm(doc=1521)
          0.04038954 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
            0.04038954 = score(doc=1521,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.23214069 = fieldWeight in 1521, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1521)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2014 16:52:04
    Theme
    Citation indexing
  5. Wang, X.; Erdelez, S.; Allen, C.; Anderson, B.; Cao, H.; Shyu, C.-R.: Role of domain knowledge in developing user-centered medical-image indexing (2012) 0.01
    0.011609698 = product of:
      0.03482909 = sum of:
        0.03482909 = product of:
          0.06965818 = sum of:
            0.06965818 = weight(_text_:indexing in 4977) [ClassicSimilarity], result of:
              0.06965818 = score(doc=4977,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3662626 = fieldWeight in 4977, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4977)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    An efficient and robust medical-image indexing procedure should be user-oriented. It is essential to index the images at the right level of description and ensure that the indexed levels match the user's interest level. This study examines 240 medical-image descriptions produced by three different groups of medical-image users (novices, intermediates, and experts) in the area of radiography. This article reports several important findings: First, the effect of domain knowledge has a significant relationship with the use of semantic image attributes in image-users' descriptions. We found that experts employ more high-level image attributes which require high-reasoning or diagnostic knowledge to search for a medical image (Abstract Objects and Scenes) than do novices; novices are more likely to describe some basic objects which do not require much radiological knowledge to search for an image they need (Generic Objects) than are experts. Second, all image users in this study prefer to use image attributes of the semantic levels to represent the image that they desired to find, especially using those specific-level and scene-related attributes. Third, image attributes generated by medical-image users can be mapped to all levels of the pyramid model that was developed to structure visual information. Therefore, the pyramid model could be considered a robust instrument for indexing medical imagery.
  6. Cui, Y.; Wang, Y.; Liu, X.; Wang, X.; Zhang, X.: Multidimensional scholarly citations : characterizing and understanding scholars' citation behaviors (2023) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 847) [ClassicSimilarity], result of:
              0.04021717 = score(doc=847,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 847, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=847)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Theme
    Citation indexing