Search (7 results, page 1 of 1)

  • × author_ss:"Wielemaker, J."
  1. Bogaard, T.; Hollink, L.; Wielemaker, J.; Ossenbruggen, J. van; Hardman, L.: Metadata categorization for identifying search patterns in a digital library (2019) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 5281) [ClassicSimilarity], result of:
              0.010148063 = score(doc=5281,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 5281, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5281)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose For digital libraries, it is useful to understand how users search in a collection. Investigating search patterns can help them to improve the user interface, collection management and search algorithms. However, search patterns may vary widely in different parts of a collection. The purpose of this paper is to demonstrate how to identify these search patterns within a well-curated historical newspaper collection using the existing metadata. Design/methodology/approach The authors analyzed search logs combined with metadata records describing the content of the collection, using this metadata to create subsets in the logs corresponding to different parts of the collection. Findings The study shows that faceted search is more prevalent than non-faceted search in terms of number of unique queries, time spent, clicks and downloads. Distinct search patterns are observed in different parts of the collection, corresponding to historical periods, geographical regions or subject matter. Originality/value First, this study provides deeper insights into search behavior at a fine granularity in a historical newspaper collection, by the inclusion of the metadata in the analysis. Second, it demonstrates how to use metadata categorization as a way to analyze distinct search patterns in a collection.
    Type
    a
  2. Hennicke, S.; Olensky, M.; Boer, V. de; Isaac, A.; Wielemaker, J.: ¬A data model for cross-domain data representation : the "Europeana Data Model" in the case of archival and museum data (2010) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 4664) [ClassicSimilarity], result of:
              0.00994303 = score(doc=4664,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 4664, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4664)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper reports on ongoing work about heterogeneous and cross-domain data conversion to a common data model in EuropeanaConnect. The "Europeana Data Model" (EDM) provides the means to accommodate data from different domains while mostly retaining the original metadata notion. We give an introduction to the EDM and demonstrate how important metadata principles of two different metadata standards can be represented by EDM: one from the library domain ("Bibliopolis"), and one from the archive domain based on the "Encoded Archival Description" (EAD) standard. We conclude that the EDM offers a feasible approach to the issue of heterogeneous data interoperability in a digital library environment.
    Type
    a
  3. Assem, M. van; Menken, M.R.; Schreiber, G.; Wielemaker, J.; Wielinga, B.: ¬A method for converting thesauri to RDF/OWL (2004) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4644) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4644,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4644, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes a method for converting existing thesauri and related resources from their native format to RDF(S) and OWL. The method identifies four steps in the conversion process. In each step, decisions have to be taken with respect to the syntax or semantics of the resulting representation. Each step is supported through a number of guidelines. The method is illustrated through conversions of two large thesauri: MeSH and WordNet.
    Type
    a
  4. Boer, V. de; Wielemaker, J.; Gent, J. van; Hildebrand, M.; Isaac, A.; Ossenbruggen, J. van; Schreiber, G.: Supporting linked data production for cultural heritage institutes : the Amsterdam Museum case study (2012) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 265) [ClassicSimilarity], result of:
              0.00894975 = score(doc=265,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 265, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=265)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Within the cultural heritage field, proprietary metadata and vocabularies are being transformed into public Linked Data. These efforts have mostly been at the level of large-scale aggregators such as Europeana where the original data is abstracted to a common format and schema. Although this approach ensures a level of consistency and interoperability, the richness of the original data is lost in the process. In this paper, we present a transparent and interactive methodology for ingesting, converting and linking cultural heritage metadata into Linked Data. The methodology is designed to maintain the richness and detail of the original metadata. We introduce the XMLRDF conversion tool and describe how it is integrated in the ClioPatria semantic web toolkit. The methodology and the tools have been validated by converting the Amsterdam Museum metadata to a Linked Data version. In this way, the Amsterdam Museum became the first 'small' cultural heritage institution with a node in the Linked Data cloud.
    Type
    a
  5. Wielinga, B.; Wielemaker, J.; Schreiber, G.; Assem, M. van: Methods for porting resources to the Semantic Web (2004) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 4640) [ClassicSimilarity], result of:
              0.008118451 = score(doc=4640,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 4640, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4640)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies will play a central role in the development of the Semantic Web. It is unrealistic to assume that such ontologies will be developed from scratch. Rather, we assume that existing resources such as thesauri and lexical data bases will be reused in the development of ontologies for the Semantic Web. In this paper we describe a method for converting existing source material to a representation that is compatible with Semantic Web languages such as RDF(S) and OWL. The method is illustrated with three case studies: converting Wordnet, AAT and MeSH to RDF(S) and OWL.
    Type
    a
  6. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Omelayenko, B.; Ossenbruggen, J. van; Wielemaker, J.; Wielinga, B.; Tordai, A.; Aroyoa, L.: Semantic annotation and search of cultural-heritage collections : the MultimediaN E-Culture demonstrator (2008) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4646) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4646,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4646, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4646)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article we describe a SemanticWeb application for semantic annotation and search in large virtual collections of cultural-heritage objects, indexed with multiple vocabularies. During the annotation phase we harvest, enrich and align collection metadata and vocabularies. The semantic-search facilities support keyword-based queries of the graph (currently 20M triples), resulting in semantically grouped result clusters, all representing potential semantic matches of the original query. We show two sample search scenario's. The annotation and search software is open source and is already being used by third parties. All software is based on establishedWeb standards, in particular HTML/XML, CSS, RDF/OWL, SPARQL and JavaScript.
  7. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Hollink, L.; Huang, Z.; Kersen, J. van; Niet, M. de; Omelayenko, B.; Ossenbruggen, J. van; Siebes, R.; Taekema, J.; Wielemaker, J.; Wielinga, B.: MultimediaN E-Culture demonstrator (2006) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4648) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4648,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4648)
          0.5 = coord(1/2)
      0.5 = coord(1/2)