Search (2 results, page 1 of 1)

  • × author_ss:"Witschel, H.F."
  • × type_ss:"a"
  1. Witschel, H.F.: Global term weights in distributed environments (2008) 0.01
    0.00990557 = product of:
      0.02971671 = sum of:
        0.011973113 = weight(_text_:in in 2096) [ClassicSimilarity], result of:
          0.011973113 = score(doc=2096,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 2096, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2096)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 2096) [ClassicSimilarity], result of:
              0.035487194 = score(doc=2096,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 2096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2096)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper examines the estimation of global term weights (such as IDF) in information retrieval scenarios where a global view on the collection is not available. In particular, the two options of either sampling documents or of using a reference corpus independent of the target retrieval collection are compared using standard IR test collections. In addition, the possibility of pruning term lists based on frequency is evaluated. The results show that very good retrieval performance can be reached when just the most frequent terms of a collection - an "extended stop word list" - are known and all terms which are not in that list are treated equally. However, the list cannot always be fully estimated from a general-purpose reference corpus, but some "domain-specific stop words" need to be added. A good solution for achieving this is to mix estimates from small samples of the target retrieval collection with ones derived from a reference corpus.
    Date
    1. 8.2008 9:44:22
  2. Witschel, H.F.: Terminology extraction and automatic indexing : comparison and qualitative evaluation of methods (2005) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 1842) [ClassicSimilarity], result of:
          0.008924231 = score(doc=1842,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 1842, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1842)
      0.16666667 = coord(1/6)
    
    Abstract
    Many terminology engineering processes involve the task of automatic terminology extraction: before the terminology of a given domain can be modelled, organised or standardised, important concepts (or terms) of this domain have to be identified and fed into terminological databases. These serve in further steps as a starting point for compiling dictionaries, thesauri or maybe even terminological ontologies for the domain. For the extraction of the initial concepts, extraction methods are needed that operate on specialised language texts. On the other hand, many machine learning or information retrieval applications require automatic indexing techniques. In Machine Learning applications concerned with the automatic clustering or classification of texts, often feature vectors are needed that describe the contents of a given text briefly but meaningfully. These feature vectors typically consist of a fairly small set of index terms together with weights indicating their importance. Short but meaningful descriptions of document contents as provided by good index terms are also useful to humans: some knowledge management applications (e.g. topic maps) use them as a set of basic concepts (topics). The author believes that the tasks of terminology extraction and automatic indexing have much in common and can thus benefit from the same set of basic algorithms. It is the goal of this paper to outline some methods that may be used in both contexts, but also to find the discriminating factors between the two tasks that call for the variation of parameters or application of different techniques. The discussion of these methods will be based on statistical, syntactical and especially morphological properties of (index) terms. The paper is concluded by the presentation of some qualitative and quantitative results comparing statistical and morphological methods.