Search (1 results, page 1 of 1)

  • × author_ss:"Xiao, J."
  • × language_ss:"d"
  • × theme_ss:"Referieren"
  1. Wan, X.; Yang, J.; Xiao, J.: Incorporating cross-document relationships between sentences for single document summarizations (2006) 0.02
    0.022235535 = product of:
      0.04447107 = sum of:
        0.04447107 = sum of:
          0.007030784 = weight(_text_:a in 2421) [ClassicSimilarity], result of:
            0.007030784 = score(doc=2421,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.13239266 = fieldWeight in 2421, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=2421)
          0.037440285 = weight(_text_:22 in 2421) [ClassicSimilarity], result of:
            0.037440285 = score(doc=2421,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 2421, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2421)
      0.5 = coord(1/2)
    
    Abstract
    Graph-based ranking algorithms have recently been proposed for single document summarizations and such algorithms evaluate the importance of a sentence by making use of the relationships between sentences in the document in a recursive way. In this paper, we investigate using other related or relevant documents to improve summarization of one single document based on the graph-based ranking algorithm. In addition to the within-document relationships between sentences in the specified document, the cross-document relationships between sentences in different documents are also taken into account in the proposed approach. We evaluate the performance of the proposed approach on DUC 2002 data with the ROUGE metric and results demonstrate that the cross-document relationships between sentences in different but related documents can significantly improve the performance of single document summarization.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
    Type
    a