Search (25 results, page 2 of 2)

  • × author_ss:"Yan, E."
  • × language_ss:"e"
  1. Yan, E.; Sugimoto, C.R.: Institutional interactions : exploring social, cognitive, and geographic relationships between institutions as demonstrated through citation networks (2011) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 4627) [ClassicSimilarity], result of:
              0.005740611 = score(doc=4627,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 4627, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4627)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The objective of this research is to examine the interaction of institutions, based on their citation and collaboration networks. The domain of library and information science is examined, using data from 1965-2010. A linear model is formulated to explore the factors that are associated with institutional citation behaviors, using the number of citations as the dependent variable, and the number of collaborations, physical distance, and topical distance as independent variables. It is found that institutional citation behaviors are associated with social, topical, and geographical factors. Dynamically, the number of citations is becoming more associated with collaboration intensity and less dependent on the country boundary and/or physical distance. This research is informative for scientometricians and policy makers.
    Type
    a
  2. Li, D.; Ding, Y.; Sugimoto, C.; He, B.; Tang, J.; Yan, E.; Lin, N.; Qin, Z.; Dong, T.: Modeling topic and community structure in social tagging : the TTR-LDA-Community model (2011) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 4759) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=4759,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 4759, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4759)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The presence of social networks in complex systems has made networks and community structure a focal point of study in many domains. Previous studies have focused on the structural emergence and growth of communities and on the topics displayed within the network. However, few scholars have closely examined the relationship between the thematic and structural properties of networks. Therefore, this article proposes the Tagger Tag Resource-Latent Dirichlet Allocation-Community model (TTR-LDA-Community model), which combines the Latent Dirichlet Allocation (LDA) model with the Girvan-Newman community detection algorithm through an inference mechanism. Using social tagging data from Delicious, this article demonstrates the clustering of active taggers into communities, the topic distributions within communities, and the ranking of taggers, tags, and resources within these communities. The data analysis evaluates patterns in community structure and topical affiliations diachronically. The article evaluates the effectiveness of community detection and the inference mechanism embedded in the model and finds that the TTR-LDA-Community model outperforms other traditional models in tag prediction. This has implications for scholars in domains interested in community detection, profiling, and recommender systems.
    Type
    a
  3. Yan, E.; Zhu, Y.: Adding the dimension of knowledge trading to source impact assessment : approaches, indicators, and implications (2017) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3633) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3633,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3633, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3633)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The objective of this paper is to systematically assess sources' (e.g., journals and proceedings) impact in knowledge trading. While there have been efforts at evaluating different aspects of journal impact, the dimension of knowledge trading is largely absent. To fill the gap, this study employed a set of trading-based indicators, including weighted degree centrality, Shannon entropy, and weighted betweenness centrality, to assess sources' trading impact. These indicators were applied to several time-sliced source-to-source citation networks that comprise 33,634 sources indexed in the Scopus database. The results show that several interdisciplinary sources, such as Nature, PLoS One, Proceedings of the National Academy of Sciences, and Science, and several specialty sources, such as Lancet, Lecture Notes in Computer Science, Journal of the American Chemical Society, Journal of Biological Chemistry, and New England Journal of Medicine, have demonstrated their marked importance in knowledge trading. Furthermore, this study also reveals that, overall, sources have established more trading partners, increased their trading volumes, broadened their trading areas, and diversified their trading contents over the past 15 years from 1997 to 2011. These results inform the understanding of source-level impact assessment and knowledge diffusion.
    Type
    a
  4. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 3421) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=3421,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 3421, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3421)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  5. Ding, Y.; Yan, E.: Scholarly network similarities : how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other (2012) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 274) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=274,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 274, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=274)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a