Search (2 results, page 1 of 1)

  • × author_ss:"Zhuge, H."
  1. Zhuge, H.; Zhang, J.: Topological centrality and its e-Science applications (2010) 0.00
    3.5683042E-4 = product of:
      0.0071366085 = sum of:
        0.0071366085 = weight(_text_:in in 3984) [ClassicSimilarity], result of:
          0.0071366085 = score(doc=3984,freq=6.0), product of:
            0.039165888 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02879306 = queryNorm
            0.1822149 = fieldWeight in 3984, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3984)
      0.05 = coord(1/20)
    
    Abstract
    Network structure analysis plays an important role in characterizing complex systems. Different from previous network centrality measures, this article proposes the topological centrality measure reflecting the topological positions of nodes and edges as well as influence between nodes and edges in general network. Experiments on different networks show distinguished features of the topological centrality by comparing with the degree centrality, closeness centrality, betweenness centrality, information centrality, and PageRank. The topological centrality measure is then applied to discover communities and to construct the backbone network. Its characteristics and significance is further shown in e-Science applications.
  2. Jiang, X.; Sun, X.; Yang, Z.; Zhuge, H.; Lapshinova-Koltunski, E.; Yao, J.: Exploiting heterogeneous scientific literature networks to combat ranking bias : evidence from the computational linguistics area (2016) 0.00
    2.0810771E-4 = product of:
      0.004162154 = sum of:
        0.004162154 = weight(_text_:in in 3017) [ClassicSimilarity], result of:
          0.004162154 = score(doc=3017,freq=4.0), product of:
            0.039165888 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.02879306 = queryNorm
            0.10626988 = fieldWeight in 3017, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3017)
      0.05 = coord(1/20)
    
    Abstract
    It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.