Search (4 results, page 1 of 1)

  • × classification_ss:"CP 5000"
  1. Semantic knowledge and semantic representations (1995) 0.00
    0.0021393995 = product of:
      0.004278799 = sum of:
        0.004278799 = product of:
          0.008557598 = sum of:
            0.008557598 = weight(_text_:a in 3568) [ClassicSimilarity], result of:
              0.008557598 = score(doc=3568,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16114321 = fieldWeight in 3568, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3568)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    G. Gainotti, M.C. Silveri, A. Daniele, L. Giustolisi, Neuroanatomical Correlates of Category-specific Semantic Disorders: A Critical Survey. J. S. Snowden, H. L. Griffiths, D. Neary, Autobiographical Experience and Word Meaning. L. Cipolotti, E.K. Warrington, Towards a Unitary Account of Access Dysphasia: A Single Case Study. E. Forde, G.W. Humphreys, Refractory Semantics in Global Aphasia: On Semantic Organisation and the Access-Storage Distinction in Neuropsychology. A. E. Hillis, A. Caramazza, The Compositionality of Lexical Semantic Representations: Clues from Semantic Errors in Object Naming. H.E. Moss, L.K. Tyler, Investigating Semantic Memory Impairments: The Contribution of Semantic Priming. K.R. Laws, S.A. Humber, D.J.C. Ramsey, R.A. McCarthy, Probing Sensory and Associative Semantics for Animals and Objects in Normal Subjects. K.R. Laws, J.J. Evans, J. R. Hodges, R.A. McCarthy, Naming without Knowing and Appearance without Associations: Evidence for Constructive Processes in Semantic Memory? J. Powell, J. Davidoff, Selective Impairments of Object-knowledge in a Case of Acquired Cortical Blindness. J.R. Hodges, N. Graham, K. Patterson, Charting the Progression in Semantic Dementia: Implications for the Organisation of Semantic Memory. E. Funnell, Objects and Properties: A Study of the Breakdown of Semantic Memory. L.J. Tippett, S. McAuliffe, M. J. Farrar, Preservation of Categorical Knowledge in Alzheimer's Disease: A Computational Account. G. W. Humphreys, C. Lamote, T.J. Lloyd-Jones, An Interactive Activation Approach to Object Processing: Effects of Structural Similarity, Name Frequency, and Task in Normality and Pathology.
    Footnote
    This book is also a double special issue of the journal Memory which forms Issues 3 and 4 of Volume 3 (1995).
  2. Assmann, A.: Erinnerungsräume : Formen und Wandlungen des kulturellen Gedächtnisses (2010) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 3980) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=3980,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 3980, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3980)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Classification
    Kul A 91 / Gedächtniskultur
    SBB
    Kul A 91 / Gedächtniskultur
  3. Sweller, J.; Ayres, P.; Kalyuga, S.: Cognitive load theory (2011) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 3784) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=3784,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 3784, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3784)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Over the last 25 years, cognitive load theory has become one of the world's leading theories of instructional design. It is heavily researched by many educational and psychological researchers and is familiar to most practicing instructional designers, especially designers using computer and related technologies. The theory can be divided into two aspects that closely inter-relate and influence each other: human cognitive architecture and the instructional designs and prescriptions that flow from that architecture. The cognitive architecture is based on biological evolution. The resulting description of human cognitive architecture is novel and accordingly, the instructional designs that flow from the architecture also are novel. All instructional procedures are routinely tested using randomized, controlled experiments. Roughly 1/3 of the book will be devoted to cognitive architecture and its evolutionary base with 2/3 devoted to the instructional implications that follow, including technology-based instruction. Researchers, teachers and instructional designers need the book because of the explosion of interest in cognitive load theory over the last few years. The theory is represented in countless journal articles but a detailed, modern overview presenting the theory and its implications in one location is not available.
  4. Cognitive load theory (2010) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 3785) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=3785,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 3785, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3785)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Cognitive load theory (CLT) is one of the most important theories in educational psychology, a highly effective guide for the design of multimedia and other learning materials. This edited volume brings together the most prolific researchers from around the world who study various aspects of cognitive load to discuss its current theoretical as well as practical issues. The book is divided into three parts. The first part describes the theoretical foundations and assumptions of CLT, the second discusses the empirical findings about the application of CLT to the design of learning environments, and the third part concludes the book with discussions and suggestions for new directions for future research. It aims to become the standard handbook in CLT for researchers and graduate students in psychology, education, and educational technology.

Languages

Types