Search (4 results, page 1 of 1)

  • × classification_ss:"ST 302"
  1. Euzenat, J.; Shvaiko, P.: Ontology matching (2010) 0.02
    0.019071244 = product of:
      0.031785406 = sum of:
        0.0094074 = product of:
          0.047036998 = sum of:
            0.047036998 = weight(_text_:problem in 168) [ClassicSimilarity], result of:
              0.047036998 = score(doc=168,freq=4.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.2652803 = fieldWeight in 168, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.03125 = fieldNorm(doc=168)
          0.2 = coord(1/5)
        0.011058315 = weight(_text_:of in 168) [ClassicSimilarity], result of:
          0.011058315 = score(doc=168,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.16928169 = fieldWeight in 168, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.011319693 = product of:
          0.022639386 = sum of:
            0.022639386 = weight(_text_:22 in 168) [ClassicSimilarity], result of:
              0.022639386 = score(doc=168,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.15476047 = fieldWeight in 168, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=168)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Ontologies are viewed as the silver bullet for many applications, but in open or evolving systems, different parties can adopt different ontologies. This increases heterogeneity problems rather than reducing heterogeneity. This book proposes ontology matching as a solution to the problem of semantic heterogeneity, offering researchers and practitioners a uniform framework of reference to currently available work. The techniques presented apply to database schema matching, catalog integration, XML schema matching and more. Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaiko's book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, artificial intelligence. With Ontology Matching, researchers and practitioners will find a reference book which presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can equally be applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a detailed account of matching techniques and matching systems in a systematic way from theoretical, practical and application perspectives.
    Date
    20. 6.2012 19:08:22
  2. Nagao, M.: Knowledge and inference (1990) 0.01
    0.01252311 = product of:
      0.031307776 = sum of:
        0.0117592495 = product of:
          0.058796246 = sum of:
            0.058796246 = weight(_text_:problem in 3304) [ClassicSimilarity], result of:
              0.058796246 = score(doc=3304,freq=4.0), product of:
                0.17731056 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.04177434 = queryNorm
                0.33160037 = fieldWeight in 3304, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3304)
          0.2 = coord(1/5)
        0.019548526 = weight(_text_:of in 3304) [ClassicSimilarity], result of:
          0.019548526 = score(doc=3304,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.2992506 = fieldWeight in 3304, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3304)
      0.4 = coord(2/5)
    
    Abstract
    Knowledge and Inference discusses an important problem for software systems: How do we treat knowledge and ideas on a computer and how do we use inference to solve problems on a computer? The book talks about the problems of knowledge and inference for the purpose of merging artificial intelligence and library science. The book begins by clarifying the concept of ""knowledge"" from many points of view, followed by a chapter on the current state of library science and the place of artificial intelligence in library science. Subsequent chapters cover central topics in the artificial intelligence: search and problem solving, methods of making proofs, and the use of knowledge in looking for a proof. There is also a discussion of how to use the knowledge system. The final chapter describes a popular expert system. It describes tools for building expert systems using an example based on Expert Systems-A Practical Introduction by P. Sell (Macmillian, 1985). This type of software is called an ""expert system shell."" This book was written as a textbook for undergraduate students covering only the basics but explaining as much detail as possible.
    LCSH
    Knowledge, Theory of
    Subject
    Knowledge, Theory of
  3. Hitzler, P.; Krötzsch, M.; Rudolph, S.: Foundations of Semantic Web technologies (2010) 0.00
    0.0023888692 = product of:
      0.011944346 = sum of:
        0.011944346 = weight(_text_:of in 359) [ClassicSimilarity], result of:
          0.011944346 = score(doc=359,freq=14.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.18284513 = fieldWeight in 359, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=359)
      0.2 = coord(1/5)
    
    Abstract
    This text introduces the standardized knowledge representation languages for modeling ontologies operating at the core of the semantic web. It covers RDF schema, Web Ontology Language (OWL), rules, query languages, the OWL 2 revision, and the forthcoming Rule Interchange Format (RIF). A 2010 CHOICE Outstanding Academic Title ! The nine chapters of the book guide the reader through the major foundational languages for the semantic Web and highlight the formal semantics. ! the book has very interesting supporting material and exercises, is oriented to W3C standards, and provides the necessary foundations for the semantic Web. It will be easy to follow by the computer scientist who already has a basic background on semantic Web issues; it will also be helpful for both self-study and teaching purposes. I recommend this book primarily as a complementary textbook for a graduate or undergraduate course in a computer science or a Web science academic program. --Computing Reviews, February 2010 This book is unique in several respects. It contains an in-depth treatment of all the major foundational languages for the Semantic Web and provides a full treatment of the underlying formal semantics, which is central to the Semantic Web effort. It is also the very first textbook that addresses the forthcoming W3C recommended standards OWL 2 and RIF. Furthermore, the covered topics and underlying concepts are easily accessible for the reader due to a clear separation of syntax and semantics ! I am confident this book will be well received and play an important role in training a larger number of students who will seek to become proficient in this growing discipline.
  4. Beierle, C.; Kern-Isberner, G.: Methoden wissensbasierter Systeme : Grundlagen, Algorithmen, Anwendungen (2008) 0.00
    9.0290763E-4 = product of:
      0.004514538 = sum of:
        0.004514538 = weight(_text_:of in 4622) [ClassicSimilarity], result of:
          0.004514538 = score(doc=4622,freq=2.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.06910896 = fieldWeight in 4622, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=4622)
      0.2 = coord(1/5)
    
    Abstract
    Dieses Buch präsentiert ein breites Spektrum aktueller Methoden zur Repräsentation und Verarbeitung (un)sicheren Wissens in maschinellen Systemen in didaktisch aufbereiteter Form. Neben symbolischen Ansätzen des nichtmonotonen Schließens (Default-Logik, hier konstruktiv und leicht verständlich mittels sog. Default-Bäume realisiert) werden auch ausführlich quantitative Methoden wie z.B. probabilistische Markov- und Bayes-Netze vorgestellt. Weitere Abschnitte beschäftigen sich mit Wissensdynamik (Truth Maintenance-Systeme), Aktionen und Planen, maschinellem Lernen, Data Mining und fallbasiertem Schließen.In einem vertieften Querschnitt werden zentrale alternative Ansätze einer logikbasierten Wissensmodellierung ausführlich behandelt. Detailliert beschriebene Algorithmen geben dem Praktiker nützliche Hinweise zur Anwendung der vorgestellten Ansätze an die Hand, während fundiertes Hintergrundwissen ein tieferes Verständnis für die Besonderheiten der einzelnen Methoden vermittelt . Mit einer weitgehend vollständigen Darstellung des Stoffes und zahlreichen, in den Text integrierten Aufgaben ist das Buch für ein Selbststudium konzipiert, eignet sich aber gleichermaßen für eine entsprechende Vorlesung. Im Online-Service zu diesem Buch werden u.a. ausführliche Lösungshinweise zu allen Aufgaben des Buches angeboten.Zahlreiche Beispiele mit medizinischem, biologischem, wirtschaftlichem und technischem Hintergrund illustrieren konkrete Anwendungsszenarien. Von namhaften Professoren empfohlen: State-of-the-Art bietet das Buch zu diesem klassischen Bereich der Informatik. Die wesentlichen Methoden wissensbasierter Systeme werden verständlich und anschaulich dargestellt. Repräsentation und Verarbeitung sicheren und unsicheren Wissens in maschinellen Systemen stehen dabei im Mittelpunkt. In der vierten, verbesserten Auflage wurde die Anzahl der motivierenden Selbsttestaufgaben mit aktuellem Praxisbezug nochmals erweitert. Ein Online-Service mit ausführlichen Musterlösungen erleichtert das Lernen.