Search (48 results, page 2 of 3)

  • × language_ss:"d"
  • × theme_ss:"Wissensrepräsentation"
  1. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2008) 0.02
    0.015452168 = product of:
      0.12361734 = sum of:
        0.12361734 = weight(_text_:ontologie in 2461) [ClassicSimilarity], result of:
          0.12361734 = score(doc=2461,freq=2.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.54110074 = fieldWeight in 2461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2461)
      0.125 = coord(1/8)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. Am Beispiel des Gegenstandsbereichs "Theater" der Schlagwortnormdatei wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, welche eine detaillierte und damit funktionale Relationierung des Vokabulars ermöglichen. Die Relationierung des Gegenstandsbereichs wird als Ontologie im OWL-Format modelliert. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines vorgegebenen Gegenstandsbereichs heraus. Das entwickelte Inventar wird als eine hierarchisch strukturierte Taxonomie gestaltet, was einen Zugewinn an Übersichtlichkeit und Funktionalität bringt.
  2. Becker, H.-G.: MODS2FRBRoo : Ein Tool zur Anbindung von bibliografischen Daten an eine Ontologie für Begriffe und Informationen (2010) 0.02
    0.015452168 = product of:
      0.12361734 = sum of:
        0.12361734 = weight(_text_:ontologie in 4265) [ClassicSimilarity], result of:
          0.12361734 = score(doc=4265,freq=2.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.54110074 = fieldWeight in 4265, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4265)
      0.125 = coord(1/8)
    
  3. Stollberg, M.: Ontologiebasierte Wissensmodellierung : Verwendung als semantischer Grundbaustein des Semantic Web (2002) 0.02
    0.015452168 = product of:
      0.12361734 = sum of:
        0.12361734 = weight(_text_:ontologie in 4495) [ClassicSimilarity], result of:
          0.12361734 = score(doc=4495,freq=8.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.54110074 = fieldWeight in 4495, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4495)
      0.125 = coord(1/8)
    
    Abstract
    Der in Kapitel B behandelte Schwerpunkt ist die Ontologie-Entwicklung. Nach der Erfassung der grundlegenden Charakteristika ontologiebasierter Wissensmodellierung stehen hier die Anforderungen bei der Erstellung einer Ontologie im Vordergrund. Dazu werden die wesentlichen diesbezüglichen Errungenschaften des sogenannten Ontology Engineering erörtert. Es werden zunächst methodologische Ansätze für den Entwicklungsprozess von Ontologien sowie für die einzelnen Aufgabengebiete entwickelter Techniken und Verfahren vorgestellt. Anschließend daran werden Design-Kriterien und ein Ansatz zur Meta-Modellierung besprochen, welche der Qualitätssicherung einer Ontologie dienen sollen. Diese Betrachtungen sollen eine Übersicht über den Erkenntnisstand des Ontology Engineering geben, womit ein wesentlicher Aspekt zur Nutzung ontologiebasierter Verfahren der Wissensmodellierung im Semantic Web abgedeckt wird. Als letzter Aspekt zur Erfassung der Charakteristika ontologiebasierter Wissensmodellierung wird in Kapitel C die Fragestellung bearbeitet, wie Ontologien in Informationssystemen eingesetzt werden können. Dazu werden zunächst die Verwendungsmöglichkeiten von Ontologien identifiziert. Dann werden Anwendungsgebiete von Ontologien vorgestellt, welche zum einen Beispiele für die aufgefundenen Einsatzmöglichkeiten darstellen und zum anderen im Hinblick auf die Untersuchung der Verwendung von Ontologien im Semantic Web grundlegende Aspekte desselben erörtern sollen. Im Anschluss daran werden die wesentlichen softwaretechnischen Herausforderungen besprochen, die sich durch die Verwendung von Ontologien in Informationssystemen ergeben. Damit wird die Erarbeitung der wesentlichen Charakteristika ontologiebasierter Verfahren der Wissensmodellierung als erstem Teil dieser Arbeit abgeschlossen.
    Basierend auf diesen Abhandlungen wird in Kapitel D die Verwendung von Ontologien im Semantic Web behandelt. Dabei ist das Semantic Web nicht als computergestützte Lösung für ein konkretes Anwendungsgebiet zu verstehen, sondern - ähnlich wie existente Web-Technologien - als eine informationstechnische Infrastruktur zur Bereitstellung und Verknüpfung von Applikationen für verschiedene Anwendungsgebiete. Die technologischen Lösungen zur Umsetzung des Semantic Web befinden sich noch in der Entwicklungsphase. Daher werden zunächst die grundlegenden Ideen der Vision des Semantic Web genauer erläutert und das antizipierte Architekturmodell zur Realisierung derselben vorgestellt, wobei insbesondere die darin angestrebte Rolle von Ontologien herausgearbeitet wird. Anschließend daran wird die formale Darstellung von Ontologien durch web-kompatible Sprachen erörtert, wodurch die Verwendung von Ontologien im Semantic Web ermöglicht werden soll. In diesem Zusammenhang sollen ferner die Beweggründe für die Verwendung von Ontologien als bedeutungsdefinierende Konstrukte im Semantic Web verdeutlicht sowie die auftretenden Herausforderungen hinsichtlich der Handhabung von Ontologien aufgezeigt werden. Dazu werden als dritter Aspekt des Kapitels entsprechende Lösungsansätze des Ontologie-Managements diskutiert. Abschließend wird auf die Implikationen für konkrete Anwendungen der Semantic Web - Technologien eingegangen, die aus der Verwendung von Ontologien im Semantic Web resultieren. Zum Abschluss der Ausführungen werden die Ergebnisse der Untersuchung zusammengefasst. Dabei soll auch eine kritische Betrachtung bezüglich der Notwendigkeit semantischer Web-Technologien sowie der Realisierbarkeit der Vision des Semantic Web vorgenommen werden.
  4. Panyr, J.: Thesauri, Semantische Netze, Frames, Topic Maps, Taxonomien, Ontologien - begriffliche Verwirrung oder konzeptionelle Vielfalt? (2006) 0.02
    0.015293681 = product of:
      0.12234945 = sum of:
        0.12234945 = weight(_text_:ontologie in 6058) [ClassicSimilarity], result of:
          0.12234945 = score(doc=6058,freq=6.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.5355509 = fieldWeight in 6058, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.03125 = fieldNorm(doc=6058)
      0.125 = coord(1/8)
    
    Abstract
    Mit der Verbreitung des Internets und insbesondere mit der Einführung des Begriffes Semantic Web wurde eine Reihe von neuen Begriffen (Termini) für nicht immer neue Entwicklungen eingeführt, ohne dass die bisherige Begriffsbildung bzw. die schon angewandten Lösungen in benachbarten Fachgebieten hinreichend berücksichtigt wurden. Dabei wird manchmal der Eindruck erweckt, dass die populären Anwendungszweige der Informatik (oder auch der Informationswissenschaft) hauptsächlich durch wirksame Schlagworte gesteuert werden. Im deutschsprachigen Raum kommt auch noch die oftmals (vermeintlich) werbewirksame Verwendung der nicht übersetzten englischen Ausdrücke im Original oder als eingedeutschter Termini. Letzteres führt dabei nicht selten zur semantischen Verschiebungen der Bedeutung der ursprünglichen Begriffe. So z.B. wird das englische Wort concept (entspricht dem deutschen Wort Begriff) mit allen seinen Ableitungen (wie z.B. conceptualization - Verbegrifflichung, conceptual - begrifflich) in der eingedeutschten unübersetzten Form fälschlich verwendet, ohne dass diese Wortschöpfungen dabei näher erläutert werden. Es wird dadurch der Eindruck erweckt, dass etwas inhaltlich Neues eingeführt wird. Häufig werden diese Begriffe auch nebeneinander verwendet, wie z.B. in der Definition von Ontologie in der Internet-Enzyklopädie Wikipedia " ... System von Begriffen und/oder Konzepten und Relationen zwischen diesen Begriffen". In den zahlreichen Studien über die Ontologie wird auf die Möglichkeit ähnlicher Verwendung von Thesauri nicht eingegangen, sie existieren im Kontext der Veröffentlichung überhaupt nicht (vgl. z.B. die Studie von Smith (2003), die jedoch mit Bezug zu Philosophie gerade zu überfrachtet wird). In der folgenden Arbeit werden verwandte Repräsentationsarten, wie z.B. Thesaurus, semantisches Netz, Frames, Themenkarten (Topic Maps) und Ontologie definiert. Die Gemeinsamkeiten dieser Repräsentationsformen werden dabei im Vordergrund stehen. Die in der Literatur häufig betonten Unterschiede sind manchmal aus der Unkenntnis der theoretischen Basis dieser Ansätze abzuleiten. Eine Koexistenz jeweiliger Repräsentation ist vonnöten. Im Vordergrund des Aufsatzes steht die mögliche Wechselwirkung zwischen Ontologien und Thesauri.
  5. Fischer, D.H.: ¬Ein Lehrbeispiel für eine Ontologie : OpenCyc (2004) 0.01
    0.013381971 = product of:
      0.10705577 = sum of:
        0.10705577 = weight(_text_:ontologie in 4568) [ClassicSimilarity], result of:
          0.10705577 = score(doc=4568,freq=6.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.46860704 = fieldWeight in 4568, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4568)
      0.125 = coord(1/8)
    
    Content
    Das Projekt Cyc ist im Jahre 1984 angetreten mit der Zielsetzung, im großen Maßstab Alltags- und enzyklopädisches Wissen in einem einheitlichen System zu formalisieren im Gegensatz zu den bisherigen Versuchen der jeweiligen Repräsentation sektoralen Expertenwissens. Nachdem man sich dem Mythos Cyc zunächst nur über Publikationen nähern konntet, wurde dann 1997 als Textdatei Cycs "Upper Ontology" durch die Firma Cycorp Inc. zugänglich gemacht. Sie enthielt aber einiges nicht, was beschrieben worden war: z.B. Regeln und die Bindung von Aussagen an "Mikrotheorien". Entsprechend dieser Beschränkung war es mir möglich, den Inhalt dieser Datei strukturell verlustfrei in mein objektorientiertes, generisches Thesaurussystem "TerminologyFramework" einzubringen. Im April 200z wurden dann unter dem Namen OpenCyc nicht nur der Inhalt eines Auszugs aus Cycorps Ontologie, sondern auch zugehörige Werkzeuge zum lesenden Stöbern, Ändern und Schließen in einem ersten Release 0.6 zugänglich. Dazu findet man reichlich tutorielles Material, jedoch ist es nicht exakt abgestimmt auf die aktuell vorliegende Wissensbasis, sowie allerhand Dokumentation; vor allem aber findet man zum Herunterladen das Softwarepaket samt Wissensbasis für Windows NT/2000/XP- oder für Linux-Systeme. In welchem Verhältnis das nun kostenlos mit einer "GNU Lesser General Public License" verfügbare OpenCyc zu dem kommerziellen "Full Cyc" der Firma Cycorp steht, darüber weiß ich nichts aus erster Hand; die von mir für OpenCyc ermittelten Zahlen (s.u.) stehen zu neueren Angaben für Cyc in einem Größenordnungsverhältnis von ca. 1 zu 10. Informationen über realisierte Anwendungen kann man der Firmenselbstdarstellung$ und den von dort erreichbaren "white papers" entnehmen. Auf der Firmeneingangsseite findet man in Gestalt einer Pyramide eine Inhaltsübersicht der Ontologie von Cyc (siehe Abbildung 1): Beim Darüberfahren mit der Maus wird das dort wie auch hier kaum leserliche Kleingedruckte im Feld links oben lesbar und durch Klicken wird eine Inhaltsbeschreibung des jeweiligen Begriffsbereichs im Feld unten gegeben. OpenCyc stellt wohl einen exemplarischen Auszug aus dem oberen Teil der Pyramide oberhalb "Domain-Specific Knowledge" dar.
  6. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2008) 0.01
    0.013244716 = product of:
      0.10595773 = sum of:
        0.10595773 = weight(_text_:ontologie in 1837) [ClassicSimilarity], result of:
          0.10595773 = score(doc=1837,freq=2.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.46380067 = fieldWeight in 1837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.046875 = fieldNorm(doc=1837)
      0.125 = coord(1/8)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. Am Beispiel des Gegenstandsbereichs "Theater" der Schlagwortnormdatei wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, welche eine detaillierte und damit funktionale Relationierung des Vokabulars ermöglichen. Die Relationierung des Gegenstandsbereichs wird als Ontologie im OWL-Format modelliert. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines vorgegebenen Gegenstandsbereichs heraus. Das entwickelte Inventar wird als eine hierarchisch strukturierte Taxonomie gestaltet, was einen Zugewinn an Übersichtlichkeit und Funktionalität bringt.
  7. Haase, P.; Tempich, C.: Wissensaustausch mit semantikbasierten Peer-to-Peer-Systemen (2006) 0.01
    0.013244716 = product of:
      0.10595773 = sum of:
        0.10595773 = weight(_text_:ontologie in 6017) [ClassicSimilarity], result of:
          0.10595773 = score(doc=6017,freq=2.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.46380067 = fieldWeight in 6017, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.046875 = fieldNorm(doc=6017)
      0.125 = coord(1/8)
    
    Abstract
    Der Austausch von Wissen kann in Peer-to-Peer-Systemen effizient gestaltet werden und hat damit ein großes Anwendungspotenzial innerhalb von Unternehmen und für virtuelle Organisationen im Allgemeinen. Dieser Beitrag konzentriert sich nicht auf Systeme die den Austausch unstrukturierten Daten (wie Multimediadaten) unterstützen, sondern auf Ansätze die den Austausch von semantischen Wissensstrukturen in Peer-to-Peer-Systemen unterstützen. Das Wissen auf den einzelnen Peers wird in solchen Systemen mit Hilfe einer Ontologie beschrieben. Insbesondere können in diesen Systemen die semantischen Wissensstrukturen dazu benutzt werden, Anfragen effektiver innerhalb des Netzwerkes zu verteilen und gleich gesinnte Nutzer zusammenzuführen. In diesem Zusammenhang präsentieren wir einen Algorithmus für das effektive Routing von Anfragen in selbstorganisierenden Peer-to-Peer-Systemen, welches proaktiv gesendete Werbungen und passiv aufgesammeltes Wissen kombiniert, um lokale Indizes von entfernten Peers aufzubauen. Der Ansatz wurde im Bibster-System prototypisch umgesetzt und in einer Fallstudie im Bereich bibliographischer Informationen evaluiert.
  8. Hermans, J.: Ontologiebasiertes Information Retrieval für das Wissensmanagement (2008) 0.01
    0.012487237 = product of:
      0.0998979 = sum of:
        0.0998979 = weight(_text_:ontologie in 506) [ClassicSimilarity], result of:
          0.0998979 = score(doc=506,freq=4.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.43727544 = fieldWeight in 506, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.03125 = fieldNorm(doc=506)
      0.125 = coord(1/8)
    
    RSWK
    Information Retrieval / Ontologie <Wissensverarbeitung> / Wissensmanagement
    Subject
    Information Retrieval / Ontologie <Wissensverarbeitung> / Wissensmanagement
  9. Ricci, F.; Schneider, R.: ¬Die Verwendung von SKOS-Daten zur semantischen Suchfragenerweiterung im Kontext des individualisierbaren Informationsportals RODIN (2010) 0.01
    0.012487237 = product of:
      0.0998979 = sum of:
        0.0998979 = weight(_text_:ontologie in 4261) [ClassicSimilarity], result of:
          0.0998979 = score(doc=4261,freq=4.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.43727544 = fieldWeight in 4261, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.03125 = fieldNorm(doc=4261)
      0.125 = coord(1/8)
    
    Content
    Der Ausgangspunkt für die Suchverfeinerung ist ein Ergebnis aus der Treffermenge, für welches ein Ontologie-Mapping durchgeführt wird, d.h. dass ausgehend von den Daten und Metadaten des Suchergebnisses der semantische Kontext für dieses Dokument innerhalb einer Ontologie ermittelt wird. Bei diesen Ontologien handelt es sich um in SKOS-Daten überführte Thesauri und Taxonomien, die aus einem bibliothekswissenschaftlichen Umfeld stammen. Durch Ermittlung des ontologischen Kontexts stehen eine Reihe von Termen in Form von Synonymen, Hypernymen und Hyponymen zur Verfügung, die es dem Benutzer ermöglichen, seine Ergebnismenge gezielt einzuschränken, zu verallgemeinern oder auf ähnliche Begriffe auszuweiten. Nach der Bestimmung des weiteren Suchkontexts wird dann in allen vom Benutzer bereits ausgewählten Widgets eine neue Suche angestoßen und das zur Suchverfeinerung ausgewählte Dokument in seiner semantischen Ausrichtung zu den übrigen Informationsquellen kontextualisiert."
  10. Köstlbacher, A. (Übers.): OWL Web Ontology Language Überblick (2004) 0.01
    0.012244609 = product of:
      0.09795687 = sum of:
        0.09795687 = weight(_text_:semantik in 4681) [ClassicSimilarity], result of:
          0.09795687 = score(doc=4681,freq=2.0), product of:
            0.21966073 = queryWeight, product of:
              6.727074 = idf(docFreq=143, maxDocs=44218)
              0.032653235 = queryNorm
            0.44594622 = fieldWeight in 4681, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.727074 = idf(docFreq=143, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
      0.125 = coord(1/8)
    
    Abstract
    Die OWL Web Ontology Language wurde entwickelt, um es Anwendungen zu ermöglichen den Inhalt von Informationen zu verarbeiten anstatt die Informationen dem Anwender nur zu präsentieren. OWL erleichtert durch zusätzliches Vokabular in Verbindung mit formaler Semantik stärkere Interpretationsmöglichkeiten von Web Inhalten als dies XML, RDF und RDFS ermöglichen. OWL besteht aus drei Untersprachen mit steigender Ausdrucksmächtigkeit: OWL Lite, OWL DL and OWL Full. Dieses Dokument wurde für Leser erstellt, die einen ersten Eindruck von den Möglichkeiten bekommen möchten, die OWL bietet. Es stellt eine Einführung in OWL anhand der Beschreibung der Merkmale der drei Untersprachen von OWL dar. Kenntnisse von RDF Schema sind hilfreich für das Verständnis, aber nicht unbedingt erforderlich. Nach der Lektüre dieses Dokuments können sich interessierte Leser für detailliertere Beschreibungen und ausführliche Beispiele der Merkmale von OWL dem OWL Guide zuwenden. Die normative formale Definition von OWL findet sich unter OWL Semantics and Abstract Syntax.
  11. Nix, M.: ¬Die praktische Einsetzbarkeit des CIDOC CRM in Informationssystemen im Bereich des Kulturerbes (2004) 0.01
    0.011037263 = product of:
      0.088298105 = sum of:
        0.088298105 = weight(_text_:ontologie in 3742) [ClassicSimilarity], result of:
          0.088298105 = score(doc=3742,freq=2.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.38650054 = fieldWeight in 3742, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3742)
      0.125 = coord(1/8)
    
    Abstract
    Es steht uns eine praktisch unbegrenzte Menge an Informationen über das World Wide Web zur Verfügung. Das Problem, das daraus erwächst, ist, diese Menge zu bewältigen und an die Information zu gelangen, die im Augenblick benötigt wird. Das überwältigende Angebot zwingt sowohl professionelle Anwender als auch Laien zu suchen, ungeachtet ihrer Ansprüche an die gewünschten Informationen. Um dieses Suchen effizienter zu gestalten, gibt es einerseits die Möglichkeit, leistungsstärkere Suchmaschinen zu entwickeln. Eine andere Möglichkeit ist, Daten besser zu strukturieren, um an die darin enthaltenen Informationen zu gelangen. Hoch strukturierte Daten sind maschinell verarbeitbar, sodass ein Teil der Sucharbeit automatisiert werden kann. Das Semantic Web ist die Vision eines weiterentwickelten World Wide Web, in dem derart strukturierten Daten von so genannten Softwareagenten verarbeitet werden. Die fortschreitende inhaltliche Strukturierung von Daten wird Semantisierung genannt. Im ersten Teil der Arbeit sollen einige wichtige Methoden der inhaltlichen Strukturierung von Daten skizziert werden, um die Stellung von Ontologien innerhalb der Semantisierung zu klären. Im dritten Kapitel wird der Aufbau und die Aufgabe des CIDOC Conceptual Reference Model (CRM), einer Domain Ontologie im Bereich des Kulturerbes dargestellt. Im darauf folgenden praktischen Teil werden verschiedene Ansätze zur Verwendung des CRM diskutiert und umgesetzt. Es wird ein Vorschlag zur Implementierung des Modells in XML erarbeitet. Das ist eine Möglichkeit, die dem Datentransport dient. Außerdem wird der Entwurf einer Klassenbibliothek in Java dargelegt, auf die die Verarbeitung und Nutzung des Modells innerhalb eines Informationssystems aufbauen kann.
  12. Helbig, H.: Wissensverarbeitung und die Semantik der natürlichen Sprache : Wissensrepräsentation mit MultiNet (2008) 0.01
    0.010203841 = product of:
      0.08163073 = sum of:
        0.08163073 = weight(_text_:semantik in 2731) [ClassicSimilarity], result of:
          0.08163073 = score(doc=2731,freq=2.0), product of:
            0.21966073 = queryWeight, product of:
              6.727074 = idf(docFreq=143, maxDocs=44218)
              0.032653235 = queryNorm
            0.37162185 = fieldWeight in 2731, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.727074 = idf(docFreq=143, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2731)
      0.125 = coord(1/8)
    
  13. Weller, K.: Ontologien: Stand und Entwicklung der Semantik für WorldWideWeb (2009) 0.01
    0.010203841 = product of:
      0.08163073 = sum of:
        0.08163073 = weight(_text_:semantik in 4425) [ClassicSimilarity], result of:
          0.08163073 = score(doc=4425,freq=2.0), product of:
            0.21966073 = queryWeight, product of:
              6.727074 = idf(docFreq=143, maxDocs=44218)
              0.032653235 = queryNorm
            0.37162185 = fieldWeight in 4425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.727074 = idf(docFreq=143, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4425)
      0.125 = coord(1/8)
    
  14. Alvers, M.R.: Semantische wissensbasierte Suche in den Life Sciences am Beispiel von GoPubMed (2010) 0.01
    0.008829811 = product of:
      0.070638485 = sum of:
        0.070638485 = weight(_text_:ontologie in 4262) [ClassicSimilarity], result of:
          0.070638485 = score(doc=4262,freq=2.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.30920044 = fieldWeight in 4262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.03125 = fieldNorm(doc=4262)
      0.125 = coord(1/8)
    
    Content
    "Im Vortrag werden Aspekte der Suche nach Informationen und Antworten aus dem breiten Spektrum von der Suche nach einer Telefonnummer bis zur Frage nach dem "Sinn des Lebens" (deren Antwort auch im Vortrag leider nicht gegeben werden kann) angesprochen. Die Verwendung von Hintergrundwissen in Form von semantischen Begriffsnetzwerken, sogenannten Ontologien, hilft enorm, der Beantwortung von Fragen näher zu kommen. Sie garantieren Vollständigkeit der Suchergebnisse und schnelles Fokussieren auf Relevantes. Das bedeutungs-getriebene Einsortieren oder das Klassifizieren von Informationen aus Dokumenten oder von Internetinhalten, ermöglicht die Disambiguierung von Begriffen wie Salz und 01, " Cyclooxygenase Inhibitoren" - eher bekannt als Aspirin - oder das Auffinden aller Dokumente, die zum Thema CO2 - Sequestrierung gehören - also auch solcher, in den Begriff CO2 - Sequestrierung nicht direkt enthalten aber solche, die für das Thema relevant sind. Die Technologie hinter GoPubMed automatisiert schwierige Analysen, die normaler Weise von Wissenschaftlern getätigt werden. Dabei werden die notwendigen Informationen, wie sie von ausgefeilten Algorithmen ([DS05]) vorausgesagt wurden, mit einer deutlich höheren Genauigkeit bereitgestellt. Transinsights semantische Suchtechnologien wurde als erstes Beispiel der nächsten Generation der Suche entwickelt. Die Stärke liegt in der Fähigkeit, große Textkorpora (> 500 Millionen Dokumente) mit großen Ontologien (> 15 Millionen Konzepte) zu verknüpfen. In GoPubMed wird die Gene Ontology und MeSH verwendet, die zusammen mit einer Geo-Ontologie und allen Autoren ca. 15 Millionen Konzepte beinhalten.m"
  15. Schmude, A.N.: Ontologiebasierte Suche und Navigation in webbasierten Informationssystemen : am Beispiel Bürgerinformationsdienste (2004) 0.01
    0.008829811 = product of:
      0.070638485 = sum of:
        0.070638485 = weight(_text_:ontologie in 4605) [ClassicSimilarity], result of:
          0.070638485 = score(doc=4605,freq=2.0), product of:
            0.22845532 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.032653235 = queryNorm
            0.30920044 = fieldWeight in 4605, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.03125 = fieldNorm(doc=4605)
      0.125 = coord(1/8)
    
    Abstract
    Webbasierte Informationssysteme werden heute von einer Vielzahl unterschiedlicher Organisationen angeboten, mit ganz verschiedenen Zielsetzungen. Die technischen Herausforderungen bzgl. Datenhaltung, Pflege der Informationen und Anbindung an das Internet scheinen gelöst. Das Auffinden bestimmter Informationen stellt für viele Nutzer aber dennoch eine große Herausforderung dar. Das gilt für das WWW (WorldWide Web ) als Ganzes, wie auch für viele einzelne webbasierte Informationssysteme. Grund dafür sind im Wesentlichen die nach wie vor ungenügenden Benutzungs-schnittstellen. Heutig gängige webbasierte Informationssysteme bieten Nutzern meist neben einer Navigation die Möglichkeit, Informationen durch das Absenden einer Suchanfrage zu suchen. Beide Strategien, also die Suche und die Navigation, weisen jeweils eigene Probleme in der Umsetzung auf, die es verhindern, dass Nutzer die gewünschte Information einfach auffinden können. Oftmals werden Suchanfragen unspezifisch und allgemein gehalten vorgetragen. Wird eine solche Anfrage mit einer großen Zusammenstellung von Daten beantwortet, man denke nur an Suchergebnisse von Suchmaschinen mit tausenden Treffern, und damit tausenden von Nieten, kann sich schnell Frust einstellen. Aber auch heutige Navigationen sind nicht geeignet, es dem Nutzer so einfach wie möglich zu machen. Sie beschränken sich meist auf Begriffshierarchien. Der Informationsraum wird also in Ober- und Unterklassen gegliedert und die Informationsobjekte den Ebenen zugeordnet. Eine solche Aufteilung kann für den einen sinnvoll und verständlich sein, andere aber in die Irre führen. Zudem lassen sich Begriffe nur anhand zweier Beziehungen, nämlich Ober- und Unterbegriff, strukturieren. Begriffe und Konzepte vieler Themengebiete weisen aber weitere Beziehungen auf, wie "gehört zu", "arbeitet zusammen mit", "entwickelte" um nur ein paar Beispiele zu nennen. Semantische Netze bzw. Ontologien können eine solche Verknüpfung durch die Beschreibung ebendieser Beziehungen leisten. Die Ausgangsüberlegung dieser Arbeit ist es, die Strukturierung des Informationsraums mit Hilfe einer Ontologie vorzunehmen. Diese erweiterte Strukturierung soll sowohl für die Suche als auch für die Navigation genutzt werden, um die Auffindbarkeit von Information zu verbessern. Eine Suchfunktionalität müsste sich nicht mehr nur auf eine wortbasierte Suche verlassen, sondern könnte das Beziehungsgeflecht nutzen. Die Navigation wiederum könnte die Beziehungen explizit machen und dadurch Nutzern helfen, den Informationsraum zu verstehen und dadurch einfacher zielgerichtet zu der gewünschten Information zu navigieren. Als Untersuchungsgegenstand werden in dieser Arbeit Bürgerinformationssysteme betrachtet. Die Anwendungsdomäne webbasierte Bürgerinformation ist ausreichend komplex, um daran die oben angeführten Probleme untersuchen zu können. Heutige Bürgerinformationssysteme weisen, neben anderen Problemen, genau die oben beschriebenen Schwächen auf, wie sich zeigen wird.
  16. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.01
    0.005184832 = product of:
      0.041478656 = sum of:
        0.041478656 = product of:
          0.062217984 = sum of:
            0.031249547 = weight(_text_:29 in 4792) [ClassicSimilarity], result of:
              0.031249547 = score(doc=4792,freq=2.0), product of:
                0.11486387 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.032653235 = queryNorm
                0.27205724 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
            0.030968437 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.030968437 = score(doc=4792,freq=2.0), product of:
                0.114346065 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032653235 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.6666667 = coord(2/3)
      0.125 = coord(1/8)
    
    Date
    2. 3.2013 12:29:05
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  17. Hinkelmann, K.: Ontopia Omnigator : ein Werkzeug zur Einführung in Topic Maps (20xx) 0.00
    0.002604129 = product of:
      0.020833032 = sum of:
        0.020833032 = product of:
          0.062499095 = sum of:
            0.062499095 = weight(_text_:29 in 3162) [ClassicSimilarity], result of:
              0.062499095 = score(doc=3162,freq=2.0), product of:
                0.11486387 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.032653235 = queryNorm
                0.5441145 = fieldWeight in 3162, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3162)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    4. 9.2011 12:29:09
  18. Roth, G.; Schwegler, H.: Kognitive Referenz und Selbstreferentialität des Gehirns : ein Beitrag zur Klärung des Verhältnisses zwischen Erkenntnistheorie und Hirnforschung (1992) 0.00
    0.0018600923 = product of:
      0.014880738 = sum of:
        0.014880738 = product of:
          0.044642214 = sum of:
            0.044642214 = weight(_text_:29 in 4607) [ClassicSimilarity], result of:
              0.044642214 = score(doc=4607,freq=2.0), product of:
                0.11486387 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.032653235 = queryNorm
                0.38865322 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4607)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    20.12.2018 12:39:29
  19. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.00
    0.0018433596 = product of:
      0.014746876 = sum of:
        0.014746876 = product of:
          0.044240627 = sum of:
            0.044240627 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.044240627 = score(doc=5576,freq=2.0), product of:
                0.114346065 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032653235 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    13.12.2017 14:17:22
  20. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.00
    0.0018433596 = product of:
      0.014746876 = sum of:
        0.014746876 = product of:
          0.044240627 = sum of:
            0.044240627 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.044240627 = score(doc=3406,freq=2.0), product of:
                0.114346065 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.032653235 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    30. 5.2010 16:22:35

Years

Types

  • a 21
  • el 14
  • x 9
  • m 6
  • r 5
  • n 1
  • s 1
  • More… Less…