Search (58 results, page 1 of 3)

  • × language_ss:"d"
  • × theme_ss:"Wissensrepräsentation"
  1. Derntl, M.; Hampel, T.; Motschnig, R.; Pitner, T.: Social Tagging und Inclusive Universal Access (2008) 0.02
    0.018232105 = product of:
      0.082044475 = sum of:
        0.014680246 = product of:
          0.029360492 = sum of:
            0.029360492 = weight(_text_:web in 2864) [ClassicSimilarity], result of:
              0.029360492 = score(doc=2864,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3059541 = fieldWeight in 2864, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2864)
          0.5 = coord(1/2)
        0.06736423 = product of:
          0.13472846 = sum of:
            0.13472846 = weight(_text_:bewertung in 2864) [ClassicSimilarity], result of:
              0.13472846 = score(doc=2864,freq=6.0), product of:
                0.18575147 = queryWeight, product of:
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.02940506 = queryNorm
                0.72531575 = fieldWeight in 2864, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2864)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Der vorliegende Artikel beleuchtet und bewertet Social Tagging als aktuelles Phänomen des Web 2.0 im Kontext bekannter Techniken der semantischen Datenorganisation. Tagging wird in einen Raum verwandter Ordnungs- und Strukturierungsansätze eingeordnet, um die fundamentalen Grundlagen des Social Tagging zu identifizieren und zuzuweisen. Dabei wird Tagging anhand des Inclusive Universal Access Paradigmas bewertet, das technische als auch menschlich-soziale Kriterien für die inklusive und barrierefreie Bereitstellung und Nutzung von Diensten definiert. Anhand dieser Bewertung werden fundamentale Prinzipien des "Inclusive Social Tagging" hergeleitet, die der Charakterisierung und Bewertung gängiger Tagging-Funktionalitäten in verbreiteten Web-2.0-Diensten dienen. Aus der Bewertung werden insbesondere Entwicklungsmöglichkeiten von Social Tagging und unterstützenden Diensten erkennbar.
  2. Hohmann, G.: ¬Die Anwendung des CIDOC-CRM für die semantische Wissensrepräsentation in den Kulturwissenschaften (2010) 0.01
    0.005918263 = product of:
      0.026632184 = sum of:
        0.014680246 = product of:
          0.029360492 = sum of:
            0.029360492 = weight(_text_:web in 4011) [ClassicSimilarity], result of:
              0.029360492 = score(doc=4011,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3059541 = fieldWeight in 4011, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 4011) [ClassicSimilarity], result of:
              0.023903877 = score(doc=4011,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 4011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Das CIDOC Conceptual Reference Model (CRM) ist eine Ontologie für den Bereich des Kulturellen Erbes, die als ISO 21127 standardisiert ist. Inzwischen liegen auch OWL-DL-Implementationen des CRM vor, die ihren Einsatz auch im Semantic Web ermöglicht. OWL-DL ist eine entscheidbare Untermenge der Web Ontology Language, die vom W3C spezifiziert wurde. Lokale Anwendungsontologien, die ebenfalls in OWL-DL modelliert werden, können über Subklassenbeziehungen mit dem CRM als Referenzontologie verbunden werden. Dadurch wird es automatischen Prozessen ermöglicht, autonom heterogene Daten semantisch zu validieren, zueinander in Bezug zu setzen und Anfragen über verschiedene Datenbestände innerhalb der Wissensdomäne zu verarbeiten und zu beantworten.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  3. Andelfinger, U.; Wyssusek, B.; Kremberg, B.; Totzke, R.: Ontologies in knowledge management : panacea or mirage? 0.01
    0.0056686485 = product of:
      0.051017836 = sum of:
        0.051017836 = sum of:
          0.014982964 = weight(_text_:web in 4393) [ClassicSimilarity], result of:
            0.014982964 = score(doc=4393,freq=6.0), product of:
              0.09596372 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02940506 = queryNorm
              0.15613155 = fieldWeight in 4393, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.01953125 = fieldNorm(doc=4393)
          0.03603487 = weight(_text_:seite in 4393) [ClassicSimilarity], result of:
            0.03603487 = score(doc=4393,freq=4.0), product of:
              0.16469958 = queryWeight, product of:
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.02940506 = queryNorm
              0.21879151 = fieldWeight in 4393, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.01953125 = fieldNorm(doc=4393)
      0.11111111 = coord(1/9)
    
    Content
    Vgl. auch Mitgliederbrief Ernst-Schröder-Zentrum, Nr.41: "Die aktuelle Entwicklung insbesondere der Internettechnologien führte in den letzten Jahren zu einem Wieder-Erwachen des Interesses von Forschern und Anwendern an (technischen) Ontologien. Typische Visionen in diesem Zusammenhang sind das ,Semantic Web' und das ,Internet der Dinge' (Web 3.0). Technische Ontologien sind formale, zeichenvermittelte symbolische Repräsentationen von lebensweltlichen Zusammenhängen, die notwendigerweise zu einem großen Teil von ihrem Kontextbezug gelöst werden und über die ursprünglichen lebensweltlichen Zusammenhänge hinaus computerverarbeitbar verfügbar werden. Häufig werden dafür XML-basierte Beschreibungssprachen eingesetzt wie z.B. der OWL-Standard. Trotz des großen Interesses sind jedoch umfangreiche und erfolgreiche Beispiele von in größerem Umfang praktisch eingesetzten (technischen) Ontologien eher die Ausnahme. Die zentrale Fragestellung unseres Beitrags ist daher, ob es eventuell grundlegendere (möglicherweise auch außertechnische) Hürden gibt auf dem Weg zu einer Verwirklichung der oft visionären Vorstellungen, wie z.B. zukünftig E-Commerce und E-Business und ,Wissensmanagement' durch technische Ontologien unterstützt werden könnten: Oder ist alles vielleicht ,nur' eine Frage der Zeit, bis wir durch ausreichend leistungsfähige Technologien für solche technischen Ontologien die Versprechungen des ,Internet der Dinge' verwirklichen können?
    Als theoretischen Ausgangspunkt wählen wir in unserem Beitrag eine medienphilosophische Perspektive, die von der Fragestellung ausgeht, inwieweit menschliches Wissen, das von Subjekten explizit oder implizit gewusst wird und Sinn und Bedeutungsbezüge hat, bereits dadurch prinzipiell verändert und möglicherweise um Wesentliches reduziert wird, wenn es in technischen Ontologien - notwendigerweise symbolhaft - repräsentiert wird. Zunächst wird dazu in unserem Beitrag historisch die jahrhundertelange Tradition insbesondere der abendländischen Kulturen seit dem Mittelalter nachgezeichnet, derzufolge zunehmend die epistemische Seite von ,Wissen' in den Vordergrund gestellt wurde, die sich besonders gut symbolisch, d.h. zeichenvermittelt darstellen lässt. Demgegenüber sind wissenschaftshistorisch andere Aspekte menschlichen Wissens wie z.B. die soziale Einbettung symbolvermittelten Wissens und Anteile ,impliziten Wissens' zunehmend in den Hintergrund getreten. Auch Fragen nach Sinn und Bedeutung bzw. reflektionsorientiertem Orientierungswissen sind teilweise davon betroffen.
    Zweifelsohne hat die wissenschaftshistorisch begründete Bevorzugung epistemischen Wissens in Verbindung mit der symbolischen Repräsentation (z.B. in Büchern und zunehmend auch in digitaler, computerverarbeitbarer Form) wesentlich zur Herausbildung unseres aktuellen materiellen Wohlstands und technologischen Fortschritts in den Industrieländern beigetragen. Vielleicht hat jedoch gerade dieser Siegeszug der epistemischen, symbolhaft repräsentierten Seite menschlichen Wissens auch dazu beigetragen, dass die eher verdeckten Beiträge der begleitenden sozialen Prozesse und impliziten Anteile menschlichen Wissens erst in den allerletzten Jahren wieder zunehmend Aufmerksamkeit erhalten. Nur vor dieser wissenschaftshistorischen Kulisse kann schließlich auch erklärt werden, dass in vielen Organisationen das Schlagwort vom ,Wissens-management' oft verkürzend so verstanden wurde, von (technischen) Wissensrepräsentationssystemen zu erhoffen, dass sie als Technologie bereits unmittelbar zum gegenseitigen Wissensaustausch und Wissenstransfer für die Menschen beitragen würden, was in der Praxis dann jedoch oft nicht so wie erhofft eingetreten ist.
    In der Finanzwirtschaft mit ihren automatisierten Handelssystemen (auf Basis technischer Ontologien) wird beispielsweise inzwischen bei außergewöhnlichen Kursbewegungen der Börse der automatische Handel unterbrochen, so dass dann auf pragmatisch-natürlichsprachliche Weise nach den Gründen für die Ausschläge gesucht werden kann. Aus Sicht der technischen Ontologien wäre eine solche Unterbrechung des Computerhandels (zur Beruhigung der Märkte) nicht zwingend erforderlich, aber sie ist sehr sinnvoll aus einer außerhalb der technischen Ontologie stehenden Perspektive, die alleine nach Sinn und Bedeutung stabiler Kursverläufe zu fragen imstande ist. Der hier sich abzeichnende ,pragmatic turn' beim Einsatz technischer Ontologien ist auch in vielfältiger Weise in Trends wie z.B. Folksonomies, Sozialen Netzwerken und Open-SourceEntwicklergruppen zu erkennen. Diese Gemeinschaften zeichnen sich dadurch aus, dass sie zwar (technische) Ontologien einsetzen, diese jedoch in intensive soziale Austauschprozesse einbinden, in denen die formalen Wissensrepräsentationen mit situativer Bedeutung und Sinn versehen und angereichert werden. Dieser Trend zu ,weicheren' Formen der Nutzung von (technischen) Ontologien scheint nach aktuellem Wissensstand auf jeden Fall in der Praxis erfolgversprechender als die anfänglichen Hoffnungen des Semantic Web oder vollständiger (technischer) Ontologien - ganz abgesehen vom laufenden Pflegeaufwand 'vollständiger' technischer Ontologien.
  4. Rahmstorf, G.: Strukturierung von inhaltlichen Daten : Topic Maps und Concepto (2004) 0.01
    0.0056054243 = product of:
      0.05044882 = sum of:
        0.05044882 = product of:
          0.10089764 = sum of:
            0.10089764 = weight(_text_:seite in 3143) [ClassicSimilarity], result of:
              0.10089764 = score(doc=3143,freq=4.0), product of:
                0.16469958 = queryWeight, product of:
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.02940506 = queryNorm
                0.61261624 = fieldWeight in 3143, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3143)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Topic Maps auf der einen Seite und das Programm Concepto auf der anderen Seite werden beschrieben. Mt Topic Maps können Wortnetze und einfache Satzstrukturen dargestellt werden. Concepto dient zur Erfassung, Bearbeitung und Visualisierung von Wortschatz und Strukturen. Es unterstützt ein Wortmodell, bei dem die verschiedenen Lesarten eines Wortes erfasst und einfachen, formalsprachlichen Begriffen zugewiesen werden können. Die Funktionen beider Systeme werden verglichen. Es wird dargestellt, was an Topic Maps und an Concepto ergänzt werden müsste, wenn beide Systeme einen kompatiblen, wechselseitigen Datenaustausch zulassen sollen. Diese Erweiterungen würden die Anwendbarkeit der Systeme noch interessanter machen.
  5. Semantic Media Wiki : Autoren sollen Wiki-Inhalte erschließen (2006) 0.01
    0.005309254 = product of:
      0.047783285 = sum of:
        0.047783285 = sum of:
          0.012110585 = weight(_text_:web in 6027) [ClassicSimilarity], result of:
            0.012110585 = score(doc=6027,freq=2.0), product of:
              0.09596372 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02940506 = queryNorm
              0.12619963 = fieldWeight in 6027, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02734375 = fieldNorm(doc=6027)
          0.035672702 = weight(_text_:seite in 6027) [ClassicSimilarity], result of:
            0.035672702 = score(doc=6027,freq=2.0), product of:
              0.16469958 = queryWeight, product of:
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.02940506 = queryNorm
              0.21659255 = fieldWeight in 6027, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.02734375 = fieldNorm(doc=6027)
      0.11111111 = coord(1/9)
    
    Content
    "Mit einer semantischen Erweiterung der Software MediaWiki ist es dem Forschungsteam Wissensmanagement des Instituts für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) der Universität Karlsruhe (TH) gelungen, das Interesse der internationalen Fachwelt auf sich zu ziehen. Die jungen Forscher Denny Vrandecic und Markus Krötzsch aus dem Team von Professor Dr. Rudi Studer machen die Inhalte von Websites, die mit MediaWiki geschrieben sind, für Maschinen besser auswertbar. Ihr Konzept zur besseren Erschließung der Inhalte geht allerdings nur auf, wenn die Wiki-Autoren aktiv mitarbeiten. Die Karlsruher Forscher setzen auf eine Kombination aus sozialer und technischer Lösung: Sie hoffen, dass sich auf der Basis ihrer Wiki-PlugIn-Software "Semantic MediaWiki" eine Art kollektive Indexierung der Wiki-Artikel durch die Autoren entwickelt - und ernten für diese Idee viel Beifall. Semantic MediaWiki wird bereits auf mehreren Websites mit begrenztem Datenvolumen erfolgreich eingesetzt, unter anderen zur Erschließung der Bibel-Inhalte (URLs siehe Kasten). Nun testen die Karlsruher Forscher, ob ihr Programm auch den gigantischen Volumenanforderungen der freien Web-Enzyklopädie Wikipedia gewachsen ist. Die Wikimedia Foundation Inc., Betreiber von Wikipedia, stellt ihnen für den Test rund 50 Gigabyte Inhalt der englischen Wikipedia-Ausgabe zur Verfügung und hat Interesse an einer Zusammenarbeit signalisiert. Semantic MediaWiki steht als Open Source Software (PHP) auf der Website Sourceforge zur Verfügung. Semantic MediaWiki ist ein relativ einfach zu bedienendes Werkzeug, welches auf leistungsstarken semantischen Wissensmanagement-Technologien aufbaut. Die Autoren können mit dem Werkzeug die Querverweise (Links), die sie in ihrem Text als Weiterleitung zu Hintergrundinformationen angeben, bei der Eingabe als Link eines bestimmten Typs kennzeichnen (typed links) und Zahlenangaben und Fakten im Text als Attribute (attributes) markieren. Bei dem Eintrag zu "Ägypten" steht dann zum Bespiel der typisierte Link "[[ist Land von::Afrika]]" / "[[is country of::africa]]", ein Attribut könnte "[[Bevölkerung:=76,000,000]]" / "[[population:=76,000,000]]" sein. Die von den Autoren erzeugten, typisierten Links werden in einer Datenbank als Dreier-Bezugsgruppen (Triple) abgelegt; die gekennzeichneten Attribute als feststehende Werte gespeichert. Die Autoren können die Relationen zur Definition der Beziehungen zwischen den verlinkten Begriffen frei wählen, z.B. "ist ...von' / "is...of", "hat..." /"has ...". Eingeführte Relationen stehen als "bisher genutzte Relationen" den anderen Schreibern für deren Textindexierung zur Verfügung.
    Aus den so festgelegten Beziehungen zwischen den verlinkten Begriffen sollen Computer automatisch sinnvolle Antworten auf komplexere Anfragen generieren können; z.B. eine Liste erzeugen, in der alle Länder von Afrika aufgeführt sind. Die Ländernamen führen als Link zurück zu dem Eintrag, in dem sie stehen - dem Artikel zum Land, für das man sich interessiert. Aus informationswissenschaftlicher Sicht ist das Informationsergebnis, das die neue Technologie produziert, relativ simpel. Aus sozialwissenschaftlicher Sicht steckt darin aber ein riesiges Potential zur Verbesserung der Bereitstellung von enzyklopädischer Information und Wissen für Menschen auf der ganzen Welt. Spannend ist auch die durch Semantic MediaWiki gegebene Möglichkeit der automatischen Zusammenführung von Informationen, die in den verschiedenen Wiki-Einträgen verteilt sind, bei einer hohen Konsistenz der Ergebnisse. Durch die feststehenden Beziehungen zwischen den Links enthält die automatisch erzeugte Liste nach Angaben der Karlsruher Forscher immer die gleichen Daten, egal, von welcher Seite aus man sie abruft. Die Suchmaschine holt sich die Bevölkerungszahl von Ägypten immer vom festgelegten Ägypten-Eintrag, so dass keine unterschiedlichen Zahlen in der Wiki-Landschaft kursieren können. Ein mit Semantic MediaWiki erstellter Testeintrag zu Deutschland kann unter http://ontoworld.org/index.php/Germany eingesehen werden. Die Faktenbox im unteren Teil des Eintrags zeigt an, was der "Eintrag" der Suchmaschine an Wissen über Deutschland anbieten kann. Diese Ergebnisse werden auch in dem Datenbeschreibungsstandard RDF angeboten. Mehr als das, was in der Faktenbox steht, kann der Eintrag nicht an die Suchmaschine abgeben."
  6. Semenova, E.: Ontologie als Begriffssystem : Theoretische Überlegungen und ihre praktische Umsetzung bei der Entwicklung einer Ontologie der Wissenschaftsdisziplinen (2010) 0.00
    0.004962764 = product of:
      0.02233244 = sum of:
        0.010380501 = product of:
          0.020761002 = sum of:
            0.020761002 = weight(_text_:web in 4095) [ClassicSimilarity], result of:
              0.020761002 = score(doc=4095,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21634221 = fieldWeight in 4095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4095)
          0.5 = coord(1/2)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 4095) [ClassicSimilarity], result of:
              0.023903877 = score(doc=4095,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 4095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4095)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Das Konzept des Semantic Web befindet sich gegenwärtig auf dem Weg von der Vision zur Realisierung und ist "noch gestaltbar", ebenso wie eine seiner Grundkonzeptionen, die Ontologie. Trotz der stetig wachsenden Anzahl der Forschungsarbeiten werden Ontologien primär aus der Sicht semantischer Technologien untersucht, Probleme der Ontologie als Begriffssystem werden in der Ontologieforschung nur partiell angetastet - für die praktische Arbeit erweist sich dieses als bedeutender Mangel. In diesem Bericht wird die Notwendigkeit, eine Ontologie aus der Sicht der Dokumentationssprache zu erforschen, als Fragestellung formuliert, außerdem werden einige schon erarbeitete theoretische Ansätze skizzenhaft dargestellt. Als Beispiel aus der Praxis wird das Material des von der DFG geförderten und am Hermann von Helmholtz-Zentrum für Kulturtechnik der Humboldt Universität zu Berlin durchgeführten Projektes "Entwicklung einer Ontologie der Wissenschaftsdisziplinen" einbezogen.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  7. Weller, K.: Anforderungen an die Wissensrepräsentation im Social Semantic Web (2010) 0.00
    0.0040368615 = product of:
      0.036331754 = sum of:
        0.036331754 = product of:
          0.07266351 = sum of:
            0.07266351 = weight(_text_:web in 4061) [ClassicSimilarity], result of:
              0.07266351 = score(doc=4061,freq=18.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.75719774 = fieldWeight in 4061, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4061)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Dieser Artikel gibt einen Einblick in die aktuelle Verschmelzung von Web 2.0-und Semantic Web-Ansätzen, die als Social Semantic Web beschrieben werden kann. Die Grundidee des Social Semantic Web wird beschrieben und einzelne erste Anwendungsbeispiele vorgestellt. Ein wesentlicher Schwerpunkt dieser Entwicklung besteht in der Umsetzung neuer Methoden und Herangehensweisen im Bereich der Wissensrepräsentation. Dieser Artikel stellt vier Schwerpunkte vor, in denen sich die Wissensrepräsentationsmethoden im Social Semantic Web weiterentwickeln müssen und geht dabei jeweils auf den aktuellen Stand ein.
    Object
    Web 2.0
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
    Theme
    Semantic Web
  8. Panzer, M.: DDC, SKOS, and linked data on the Web (2008) 0.00
    0.003262277 = product of:
      0.029360492 = sum of:
        0.029360492 = product of:
          0.058720984 = sum of:
            0.058720984 = weight(_text_:web in 4478) [ClassicSimilarity], result of:
              0.058720984 = score(doc=4478,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.6119082 = fieldWeight in 4478, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4478)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Everything need not be miscellaneous: controlled vocabularies and classification in a Web world, OCLC/ISKO-NA Preconference Workshop,10th International ISKO Conference, Montreal, Canada, August 5-8, 2008
  9. Voß, J.: ¬Das Simple Knowledge Organisation System (SKOS) als Kodierungs- und Austauschformat der DDC für Anwendungen im Semantischen Web (2007) 0.00
    0.003262277 = product of:
      0.029360492 = sum of:
        0.029360492 = product of:
          0.058720984 = sum of:
            0.058720984 = weight(_text_:web in 243) [ClassicSimilarity], result of:
              0.058720984 = score(doc=243,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.6119082 = fieldWeight in 243, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.09375 = fieldNorm(doc=243)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Theme
    Semantic Web
  10. Ulrich, W.: Simple Knowledge Organisation System (2007) 0.00
    0.003262277 = product of:
      0.029360492 = sum of:
        0.029360492 = product of:
          0.058720984 = sum of:
            0.058720984 = weight(_text_:web in 105) [ClassicSimilarity], result of:
              0.058720984 = score(doc=105,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.6119082 = fieldWeight in 105, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.09375 = fieldNorm(doc=105)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Content
    Semantic Web - Taxonomie und Thesaurus - SKOS - Historie - Klassen und Eigenschaften - Beispiele - Generierung - automatisiert - per Folksonomie - Fazit und Ausblick
    Theme
    Semantic Web
  11. Hüsken, P.: Informationssuche im Semantic Web : Methoden des Information Retrieval für die Wissensrepräsentation (2006) 0.00
    0.003262277 = product of:
      0.029360492 = sum of:
        0.029360492 = product of:
          0.058720984 = sum of:
            0.058720984 = weight(_text_:web in 4332) [ClassicSimilarity], result of:
              0.058720984 = score(doc=4332,freq=16.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.6119082 = fieldWeight in 4332, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4332)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Footnote
    Zugl.: Dortmund, Univ., Dipl.-Arb., 2006 u.d.T.: Hüsken, Peter: Information-Retrieval im Semantic-Web.
    RSWK
    Information Retrieval / Semantic Web
    Subject
    Information Retrieval / Semantic Web
    Theme
    Semantic Web
  12. Gams, E.; Mitterdorfer, D.: Semantische Content Management Systeme (2009) 0.00
    0.0028252148 = product of:
      0.025426934 = sum of:
        0.025426934 = product of:
          0.050853867 = sum of:
            0.050853867 = weight(_text_:web in 4865) [ClassicSimilarity], result of:
              0.050853867 = score(doc=4865,freq=12.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.5299281 = fieldWeight in 4865, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4865)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Content Management Systeme (CMS) sind in vielen Organisationen bereits seit längerer Zeit fester Bestandteil zur Verwaltung und kollaborativen Bearbeitung von Text- und Multimedia-Inhalten. Im Zuge der rasch ansteigenden Fülle an Informationen und somit auch Wissen wird die Überschaubarkeit der Datenbestände jedoch massiv eingeschränkt. Diese und zusätzliche Anforderungen, wie automatisch Datenquellen aus dem World Wide Web (WWW) zu extrahieren, lassen traditionelle CMS immer mehr an ihre Grenzen stoßen. Dieser Beitrag diskutiert die neuen Herausforderungen an traditionelle CMS und bietet Lösungsvorschläge, wie CMS kombiniert mit semantischen Technologien diesen Herausforderungen begegnen können. Die Autoren stellen eine generische Systemarchitektur für Content Management Systeme vor, die einerseits Inhalte für das Semantic Web generieren, andererseits Content aus dem Web 2.0 syndizieren können und bei der Aufbereitung des Content den User mittels semantischer Technologien wie Reasoning oder Informationsextraktion unterstützen. Dabei wird auf Erfahrungen bei der prototypischen Implementierung von semantischer Technologie in ein bestehendes CMS System zurückgegriffen.
    Object
    Web 2.0
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
  13. Voß, J.: Vom Social Tagging zum Semantic Tagging (2008) 0.00
    0.0026912412 = product of:
      0.02422117 = sum of:
        0.02422117 = product of:
          0.04844234 = sum of:
            0.04844234 = weight(_text_:web in 2884) [ClassicSimilarity], result of:
              0.04844234 = score(doc=2884,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.50479853 = fieldWeight in 2884, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2884)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Social Tagging als freie Verschlagwortung durch Nutzer im Web wird immer häufiger mit der Idee des Semantic Web in Zusammenhang gebracht. Wie beide Konzepte in der Praxis konkret zusammenkommen sollen, bleibt jedoch meist unklar. Dieser Artikel soll hier Aufklärung leisten, indem die Kombination von Social Tagging und Semantic Web in Form von Semantic Tagging mit dem Simple Knowledge Organisation System dargestellt und auf die konkreten Möglichkeiten, Vorteile und offenen Fragen der Semantischen Indexierung eingegangen wird.
    Theme
    Semantic Web
  14. Hausenblas, M.: Anreicherung von Webinhalten mit Semantik : Microformats und RDFa (2009) 0.00
    0.002663638 = product of:
      0.023972742 = sum of:
        0.023972742 = product of:
          0.047945485 = sum of:
            0.047945485 = weight(_text_:web in 4862) [ClassicSimilarity], result of:
              0.047945485 = score(doc=4862,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.49962097 = fieldWeight in 4862, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4862)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
    Theme
    Semantic Web
  15. Stollberg, M.: Ontologiebasierte Wissensmodellierung : Verwendung als semantischer Grundbaustein des Semantic Web (2002) 0.00
    0.002605783 = product of:
      0.023452047 = sum of:
        0.023452047 = product of:
          0.046904095 = sum of:
            0.046904095 = weight(_text_:web in 4495) [ClassicSimilarity], result of:
              0.046904095 = score(doc=4495,freq=30.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.48876905 = fieldWeight in 4495, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4495)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Der in Kapitel B behandelte Schwerpunkt ist die Ontologie-Entwicklung. Nach der Erfassung der grundlegenden Charakteristika ontologiebasierter Wissensmodellierung stehen hier die Anforderungen bei der Erstellung einer Ontologie im Vordergrund. Dazu werden die wesentlichen diesbezüglichen Errungenschaften des sogenannten Ontology Engineering erörtert. Es werden zunächst methodologische Ansätze für den Entwicklungsprozess von Ontologien sowie für die einzelnen Aufgabengebiete entwickelter Techniken und Verfahren vorgestellt. Anschließend daran werden Design-Kriterien und ein Ansatz zur Meta-Modellierung besprochen, welche der Qualitätssicherung einer Ontologie dienen sollen. Diese Betrachtungen sollen eine Übersicht über den Erkenntnisstand des Ontology Engineering geben, womit ein wesentlicher Aspekt zur Nutzung ontologiebasierter Verfahren der Wissensmodellierung im Semantic Web abgedeckt wird. Als letzter Aspekt zur Erfassung der Charakteristika ontologiebasierter Wissensmodellierung wird in Kapitel C die Fragestellung bearbeitet, wie Ontologien in Informationssystemen eingesetzt werden können. Dazu werden zunächst die Verwendungsmöglichkeiten von Ontologien identifiziert. Dann werden Anwendungsgebiete von Ontologien vorgestellt, welche zum einen Beispiele für die aufgefundenen Einsatzmöglichkeiten darstellen und zum anderen im Hinblick auf die Untersuchung der Verwendung von Ontologien im Semantic Web grundlegende Aspekte desselben erörtern sollen. Im Anschluss daran werden die wesentlichen softwaretechnischen Herausforderungen besprochen, die sich durch die Verwendung von Ontologien in Informationssystemen ergeben. Damit wird die Erarbeitung der wesentlichen Charakteristika ontologiebasierter Verfahren der Wissensmodellierung als erstem Teil dieser Arbeit abgeschlossen.
    Basierend auf diesen Abhandlungen wird in Kapitel D die Verwendung von Ontologien im Semantic Web behandelt. Dabei ist das Semantic Web nicht als computergestützte Lösung für ein konkretes Anwendungsgebiet zu verstehen, sondern - ähnlich wie existente Web-Technologien - als eine informationstechnische Infrastruktur zur Bereitstellung und Verknüpfung von Applikationen für verschiedene Anwendungsgebiete. Die technologischen Lösungen zur Umsetzung des Semantic Web befinden sich noch in der Entwicklungsphase. Daher werden zunächst die grundlegenden Ideen der Vision des Semantic Web genauer erläutert und das antizipierte Architekturmodell zur Realisierung derselben vorgestellt, wobei insbesondere die darin angestrebte Rolle von Ontologien herausgearbeitet wird. Anschließend daran wird die formale Darstellung von Ontologien durch web-kompatible Sprachen erörtert, wodurch die Verwendung von Ontologien im Semantic Web ermöglicht werden soll. In diesem Zusammenhang sollen ferner die Beweggründe für die Verwendung von Ontologien als bedeutungsdefinierende Konstrukte im Semantic Web verdeutlicht sowie die auftretenden Herausforderungen hinsichtlich der Handhabung von Ontologien aufgezeigt werden. Dazu werden als dritter Aspekt des Kapitels entsprechende Lösungsansätze des Ontologie-Managements diskutiert. Abschließend wird auf die Implikationen für konkrete Anwendungen der Semantic Web - Technologien eingegangen, die aus der Verwendung von Ontologien im Semantic Web resultieren. Zum Abschluss der Ausführungen werden die Ergebnisse der Untersuchung zusammengefasst. Dabei soll auch eine kritische Betrachtung bezüglich der Notwendigkeit semantischer Web-Technologien sowie der Realisierbarkeit der Vision des Semantic Web vorgenommen werden.
  16. Hüsken, P.: Information Retrieval im Semantic Web (2006) 0.00
    0.0025790567 = product of:
      0.023211509 = sum of:
        0.023211509 = product of:
          0.046423018 = sum of:
            0.046423018 = weight(_text_:web in 4333) [ClassicSimilarity], result of:
              0.046423018 = score(doc=4333,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.48375595 = fieldWeight in 4333, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4333)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Theme
    Semantic Web
  17. Dröge, E.: Leitfaden für das Verbinden von Ontologien (2010) 0.00
    0.0023306834 = product of:
      0.02097615 = sum of:
        0.02097615 = product of:
          0.0419523 = sum of:
            0.0419523 = weight(_text_:web in 3507) [ClassicSimilarity], result of:
              0.0419523 = score(doc=3507,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.43716836 = fieldWeight in 3507, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3507)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    In Tim Berners Lees Vorstellung von einem Semantic Web wird das zur Zeit existierende Web um maschinenlesbare Metadaten, die in Form von Ontologien repräsentiert werden, erweitert und so mit semantischen Zusätzen versehen. Wie auch das WWW ist das Semantic Web dezentral aufgebaut, also werden Ontologien von unterschiedlichen Gruppen von Menschen zu den unterschiedlichsten Themengebieten erstellt. Um daraus ein Netz aus Informationen zu schaffen, müssen diese miteinander verbunden werden. Das geschieht über semantische oder syntaktische Matchingverfahren, denen ein Merging oder ein Mapping der Ontologien folgt. In dieser Arbeit wird genauer auf die einzelnen Methoden und die Zukunft des Semantic Webs eingegangen.
  18. Köstlbacher, A. (Übers.): OWL Web Ontology Language Überblick (2004) 0.00
    0.002306778 = product of:
      0.020761002 = sum of:
        0.020761002 = product of:
          0.041522004 = sum of:
            0.041522004 = weight(_text_:web in 4681) [ClassicSimilarity], result of:
              0.041522004 = score(doc=4681,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.43268442 = fieldWeight in 4681, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Die OWL Web Ontology Language wurde entwickelt, um es Anwendungen zu ermöglichen den Inhalt von Informationen zu verarbeiten anstatt die Informationen dem Anwender nur zu präsentieren. OWL erleichtert durch zusätzliches Vokabular in Verbindung mit formaler Semantik stärkere Interpretationsmöglichkeiten von Web Inhalten als dies XML, RDF und RDFS ermöglichen. OWL besteht aus drei Untersprachen mit steigender Ausdrucksmächtigkeit: OWL Lite, OWL DL and OWL Full. Dieses Dokument wurde für Leser erstellt, die einen ersten Eindruck von den Möglichkeiten bekommen möchten, die OWL bietet. Es stellt eine Einführung in OWL anhand der Beschreibung der Merkmale der drei Untersprachen von OWL dar. Kenntnisse von RDF Schema sind hilfreich für das Verständnis, aber nicht unbedingt erforderlich. Nach der Lektüre dieses Dokuments können sich interessierte Leser für detailliertere Beschreibungen und ausführliche Beispiele der Merkmale von OWL dem OWL Guide zuwenden. Die normative formale Definition von OWL findet sich unter OWL Semantics and Abstract Syntax.
    Theme
    Semantic Web
  19. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.00
    0.002213322 = product of:
      0.019919898 = sum of:
        0.019919898 = product of:
          0.039839797 = sum of:
            0.039839797 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.039839797 = score(doc=5576,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    13.12.2017 14:17:22
  20. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.00
    0.002213322 = product of:
      0.019919898 = sum of:
        0.019919898 = product of:
          0.039839797 = sum of:
            0.039839797 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.039839797 = score(doc=3406,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    30. 5.2010 16:22:35

Types

  • a 34
  • el 12
  • x 11
  • r 3
  • m 2
  • n 1
  • s 1
  • More… Less…