Search (102 results, page 6 of 6)

  • × language_ss:"d"
  • × type_ss:"el"
  1. Wolfangel, E.: ¬Die Grenzen der künstlichen Intelligenz (2016) 0.00
    0.004764588 = product of:
      0.009529176 = sum of:
        0.009529176 = product of:
          0.019058352 = sum of:
            0.019058352 = weight(_text_:systems in 4107) [ClassicSimilarity], result of:
              0.019058352 = score(doc=4107,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.118839346 = fieldWeight in 4107, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4107)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Auch überwachtes Lernen ist kaum zu kontrollieren Dabei führt der Begriff überwachtes Lernen in die Irre: Dieses Lernen ist weit weniger zu kontrollieren, als der Begriff suggeriert. Der Algorithmus entscheidet schließlich auf eigene Faust, welche Kriterien wichtig sind für die Unterscheidung. "Deshalb ist es zentral, dass der Trainingsdatensatz repräsentativ ist für die Art von Daten, die man vorhersagen will", sagt Fred Hamprecht, Professor für Bildverarbeitung an der Universität Heidelberg. Das kann allerdings kniffelig sein. So kursiert in Forscherkreisen das Beispiel eines Systems, das darauf trainiert wurde, Panzer auf Bildern zu erkennen. Der Trainingsdatensatz bestand aus Werbebildern der Herstellerfirmen von Panzern und beliebigen anderen Bildern, auf denen kein Panzer zu sehen war. Aber das System funktionierte in der Anwendung nicht - es erkannte Panzer nicht, sondern filterte stattdessen Bilder heraus, auf denen die Sonne schien. Das Problem war schnell erkannt: Auf den Werbebildern hatte ebenfalls stets die Sonne geschienen. Das Netz hatte das als Kriterium angenommen. "Falls das Beispiel nicht wahr ist, ist es zumindest schön erfunden", sagt Hamprecht. Aber nicht alle Fehler sind so einfach zu finden. "Die Frage ist immer, woher die Daten kommen", sagt Hamprecht. Ein Sensor beispielsweise altert oder verschmutzt, Bilder werden eventuell mit der Zeit dunkler. Wer kein falsches Ergebnis haben möchte, muss diese "Datenalterung" mit einrechnen - und sich ihrer dafür erstmal bewusst sein. Auch ein falsches Ergebnis wird nicht unbedingt so einfach entdeckt: Schließlich entscheiden Algorithmen nicht nur über für Menschen offensichtlich zu erkennende Dinge wie die, ob auf einem Bild ein Panzer ist.
  2. Laaff, M.: Googles genialer Urahn (2011) 0.00
    0.0044188877 = product of:
      0.008837775 = sum of:
        0.008837775 = product of:
          0.01767555 = sum of:
            0.01767555 = weight(_text_:22 in 4610) [ClassicSimilarity], result of:
              0.01767555 = score(doc=4610,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.09672529 = fieldWeight in 4610, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4610)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    24.10.2008 14:19:22

Years

Types

  • a 50
  • i 9
  • m 5
  • r 2
  • x 2
  • b 1
  • s 1
  • More… Less…