Search (3 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Automatisches Indexieren"
  • × year_i:[2020 TO 2030}
  1. Yang, T.-H.; Hsieh, Y.-L.; Liu, S.-H.; Chang, Y.-C.; Hsu, W.-L.: ¬A flexible template generation and matching method with applications for publication reference metadata extraction (2021) 0.03
    0.03481059 = product of:
      0.06962118 = sum of:
        0.013160506 = product of:
          0.052642025 = sum of:
            0.052642025 = weight(_text_:based in 63) [ClassicSimilarity], result of:
              0.052642025 = score(doc=63,freq=10.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.37218451 = fieldWeight in 63, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=63)
          0.25 = coord(1/4)
        0.056460675 = weight(_text_:term in 63) [ClassicSimilarity], result of:
          0.056460675 = score(doc=63,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 63, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=63)
      0.5 = coord(2/4)
    
    Abstract
    Conventional rule-based approaches use exact template matching to capture linguistic information and necessarily need to enumerate all variations. We propose a novel flexible template generation and matching scheme called the principle-based approach (PBA) based on sequence alignment, and employ it for reference metadata extraction (RME) to demonstrate its effectiveness. The main contributions of this research are threefold. First, we propose an automatic template generation that can capture prominent patterns using the dominating set algorithm. Second, we devise an alignment-based template-matching technique that uses a logistic regression model, which makes it more general and flexible than pure rule-based approaches. Last, we apply PBA to RME on extensive cross-domain corpora and demonstrate its robustness and generality. Experiments reveal that the same set of templates produced by the PBA framework not only deliver consistent performance on various unseen domains, but also surpass hand-crafted knowledge (templates). We use four independent journal style test sets and one conference style test set in the experiments. When compared to renowned machine learning methods, such as conditional random fields (CRF), as well as recent deep learning methods (i.e., bi-directional long short-term memory with a CRF layer, Bi-LSTM-CRF), PBA has the best performance for all datasets.
  2. Lowe, D.B.; Dollinger, I.; Koster, T.; Herbert, B.E.: Text mining for type of research classification (2021) 0.00
    0.003058225 = product of:
      0.0122329 = sum of:
        0.0122329 = product of:
          0.0489316 = sum of:
            0.0489316 = weight(_text_:based in 720) [ClassicSimilarity], result of:
              0.0489316 = score(doc=720,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.34595144 = fieldWeight in 720, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=720)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This project brought together undergraduate students in Computer Science with librarians to mine abstracts of articles from the Texas A&M University Libraries' institutional repository, OAKTrust, in order to probe the creation of new metadata to improve discovery and use. The mining operation task consisted simply of classifying the articles into two categories of research type: basic research ("for understanding," "curiosity-based," or "knowledge-based") and applied research ("use-based"). These categories are fundamental especially for funders but are also important to researchers. The mining-to-classification steps took several iterations, but ultimately, we achieved good results with the toolkit BERT (Bidirectional Encoder Representations from Transformers). The project and its workflows represent a preview of what may lie ahead in the future of crafting metadata using text mining techniques to enhance discoverability.
  3. Villaespesa, E.; Crider, S.: ¬A critical comparison analysis between human and machine-generated tags for the Metropolitan Museum of Art's collection (2021) 0.00
    0.0014713892 = product of:
      0.005885557 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 341) [ClassicSimilarity], result of:
              0.023542227 = score(doc=341,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 341, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=341)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Purpose Based on the highlights of The Metropolitan Museum of Art's collection, the purpose of this paper is to examine the similarities and differences between the subject keywords tags assigned by the museum and those produced by three computer vision systems. Design/methodology/approach This paper uses computer vision tools to generate the data and the Getty Research Institute's Art and Architecture Thesaurus (AAT) to compare the subject keyword tags. Findings This paper finds that there are clear opportunities to use computer vision technologies to automatically generate tags that expand the terms used by the museum. This brings a new perspective to the collection that is different from the traditional art historical one. However, the study also surfaces challenges about the accuracy and lack of context within the computer vision results. Practical implications This finding has important implications on how these machine-generated tags complement the current taxonomies and vocabularies inputted in the collection database. In consequence, the museum needs to consider the selection process for choosing which computer vision system to apply to their collection. Furthermore, they also need to think critically about the kind of tags they wish to use, such as colors, materials or objects. Originality/value The study results add to the rapidly evolving field of computer vision within the art information context and provide recommendations of aspects to consider before selecting and implementing these technologies.