Search (197 results, page 10 of 10)

  • × language_ss:"e"
  • × theme_ss:"Automatisches Indexieren"
  1. Leung, C.-H.; Kan, W.-K.: ¬A statistical learning approach to automatic indexing of controlled index terms (1997) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 6497) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=6497,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 6497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=6497)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science. 48(1997) no.1, S.55-66
  2. Liu, G.Z.: Semantic vector space model : implementation and evaluation (1997) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 161) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=161,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 161, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=161)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science. 48(1997) no.5, S.395-417
  3. Cui, H.; Boufford, D.; Selden, P.: Semantic annotation of biosystematics literature without training examples (2010) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 3422) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=3422,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 3422, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3422)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.3, S.522-542
  4. Matthews, P.; Glitre, K.: Genre analysis of movies using a topic model of plot summaries (2021) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 412) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=412,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 412, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=412)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 72(2021) no.12, S.1511-1527
  5. Asula, M.; Makke, J.; Freienthal, L.; Kuulmets, H.-A.; Sirel, R.: Kratt: developing an automatic subject indexing tool for the National Library of Estonia : how to transfer metadata information among work cluster members (2021) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 723) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=723,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 723, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=723)
      0.071428575 = coord(1/14)
    
  6. Kajanan, S.; Bao, Y.; Datta, A.; VanderMeer, D.; Dutta, K.: Efficient automatic search query formulation using phrase-level analysis (2014) 0.00
    4.076838E-4 = product of:
      0.005707573 = sum of:
        0.005707573 = weight(_text_:information in 1264) [ClassicSimilarity], result of:
          0.005707573 = score(doc=1264,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.10971737 = fieldWeight in 1264, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1264)
      0.071428575 = coord(1/14)
    
    Abstract
    Over the past decade, the volume of information available digitally over the Internet has grown enormously. Technical developments in the area of search, such as Google's Page Rank algorithm, have proved so good at serving relevant results that Internet search has become integrated into daily human activity. One can endlessly explore topics of interest simply by querying and reading through the resulting links. Yet, although search engines are well known for providing relevant results based on users' queries, users do not always receive the results they are looking for. Google's Director of Research describes clickstream evidence of frustrated users repeatedly reformulating queries and searching through page after page of results. Given the general quality of search engine results, one must consider the possibility that the frustrated user's query is not effective; that is, it does not describe the essence of the user's interest. Indeed, extensive research into human search behavior has found that humans are not very effective at formulating good search queries that describe what they are interested in. Ideally, the user should simply point to a portion of text that sparked the user's interest, and a system should automatically formulate a search query that captures the essence of the text. In this paper, we describe an implemented system that provides this capability. We first describe how our work differs from existing work in automatic query formulation, and propose a new method for improved quantification of the relevance of candidate search terms drawn from input text using phrase-level analysis. We then propose an implementable method designed to provide relevant queries based on a user's text input. We demonstrate the quality of our results and performance of our system through experimental studies. Our results demonstrate that our system produces relevant search terms with roughly two-thirds precision and recall compared to search terms selected by experts, and that typical users find significantly more relevant results (31% more relevant) more quickly (64% faster) using our system than self-formulated search queries. Further, we show that our implementation can scale to request loads of up to 10 requests per second within current online responsiveness expectations (<2-second response times at the highest loads tested).
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.5, S.1058-1075
  7. Mesquita, L.A.P.; Souza, R.R.; Baracho Porto, R.M.A.: Noun phrases in automatic indexing: : a structural analysis of the distribution of relevant terms in doctoral theses (2014) 0.00
    3.8237238E-4 = product of:
      0.0053532133 = sum of:
        0.0053532133 = product of:
          0.016059639 = sum of:
            0.016059639 = weight(_text_:22 in 1442) [ClassicSimilarity], result of:
              0.016059639 = score(doc=1442,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.15476047 = fieldWeight in 1442, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1442)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  8. Vledutz-Stokolov, N.: Concept recognition in an automatic text-processing system for the life sciences (1987) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 2849) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=2849,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 2849, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2849)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science. 38(1987) no.4, S.269-287
  9. Martins, E.F.; Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: On cold start for associative tag recommendation (2016) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 2494) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=2494,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 2494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2494)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.83-105
  10. Blank, I.; Rokach, L.; Shani, G.: Leveraging metadata to recommend keywords for academic papers (2016) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3232) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3232,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3232)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.3073-3091
  11. Li, X.; Zhang, A.; Li, C.; Ouyang, J.; Cai, Y.: Exploring coherent topics by topic modeling with term weighting (2018) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 5045) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=5045,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 5045, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5045)
      0.071428575 = coord(1/14)
    
    Source
    Information processing and management. 54(2018) no.6, S.1345-1358
  12. Wang, S.; Koopman, R.: Embed first, then predict (2019) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 5400) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=5400,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 5400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5400)
      0.071428575 = coord(1/14)
    
    Footnote
    Beitrag eines Special Issue: Research Information Systems and Science Classifications; including papers from "Trajectories for Research: Fathoming the Promise of the NARCIS Classification," 27-28 September 2018, The Hague, The Netherlands.
  13. Zhang, Y.; Zhang, C.; Li, J.: Joint modeling of characters, words, and conversation contexts for microblog keyphrase extraction (2020) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 5816) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=5816,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 5816, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5816)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.5, S.553-567
  14. Villaespesa, E.; Crider, S.: ¬A critical comparison analysis between human and machine-generated tags for the Metropolitan Museum of Art's collection (2021) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 341) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=341,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 341, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=341)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose Based on the highlights of The Metropolitan Museum of Art's collection, the purpose of this paper is to examine the similarities and differences between the subject keywords tags assigned by the museum and those produced by three computer vision systems. Design/methodology/approach This paper uses computer vision tools to generate the data and the Getty Research Institute's Art and Architecture Thesaurus (AAT) to compare the subject keyword tags. Findings This paper finds that there are clear opportunities to use computer vision technologies to automatically generate tags that expand the terms used by the museum. This brings a new perspective to the collection that is different from the traditional art historical one. However, the study also surfaces challenges about the accuracy and lack of context within the computer vision results. Practical implications This finding has important implications on how these machine-generated tags complement the current taxonomies and vocabularies inputted in the collection database. In consequence, the museum needs to consider the selection process for choosing which computer vision system to apply to their collection. Furthermore, they also need to think critically about the kind of tags they wish to use, such as colors, materials or objects. Originality/value The study results add to the rapidly evolving field of computer vision within the art information context and provide recommendations of aspects to consider before selecting and implementing these technologies.
  15. Ahmed, M.: Automatic indexing for agriculture : designing a framework by deploying Agrovoc, Agris and Annif (2023) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 1024) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1024,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1024, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1024)
      0.071428575 = coord(1/14)
    
    Source
    ¬SRELS Journal of Information Management. 60(2023) no.2, S.85-95
  16. Chung, E.-K.; Miksa, S.; Hastings, S.K.: ¬A framework of automatic subject term assignment for text categorization : an indexing conception-based approach (2010) 0.00
    2.8827597E-4 = product of:
      0.0040358636 = sum of:
        0.0040358636 = weight(_text_:information in 3434) [ClassicSimilarity], result of:
          0.0040358636 = score(doc=3434,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0775819 = fieldWeight in 3434, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3434)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.4, S.688-699
  17. Willis, C.; Losee, R.M.: ¬A random walk on an ontology : using thesaurus structure for automatic subject indexing (2013) 0.00
    2.8827597E-4 = product of:
      0.0040358636 = sum of:
        0.0040358636 = weight(_text_:information in 1016) [ClassicSimilarity], result of:
          0.0040358636 = score(doc=1016,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0775819 = fieldWeight in 1016, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1016)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.7, S.1330-1344

Types

  • a 187
  • el 10
  • m 5
  • s 5
  • More… Less…