Search (35 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Automatisches Indexieren"
  1. Wolfekuhler, M.R.; Punch, W.F.: Finding salient features for personal Web pages categories (1997) 0.13
    0.13176255 = product of:
      0.19764382 = sum of:
        0.07707474 = weight(_text_:wide in 2673) [ClassicSimilarity], result of:
          0.07707474 = score(doc=2673,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.342674 = fieldWeight in 2673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.12056909 = sum of:
          0.07242467 = weight(_text_:web in 2673) [ClassicSimilarity], result of:
            0.07242467 = score(doc=2673,freq=6.0), product of:
              0.1656677 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.050763648 = queryNorm
              0.43716836 = fieldWeight in 2673, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2673)
          0.048144415 = weight(_text_:22 in 2673) [ClassicSimilarity], result of:
            0.048144415 = score(doc=2673,freq=2.0), product of:
              0.17776565 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050763648 = queryNorm
              0.2708308 = fieldWeight in 2673, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2673)
      0.6666667 = coord(2/3)
    
    Abstract
    Examines techniques that discover features in sets of pre-categorized documents, such that similar documents can be found on the WWW. Examines techniques which will classifiy training examples with high accuracy, then explains why this is not necessarily useful. Describes a method for extracting word clusters from the raw document features. Results show that the clustering technique is successful in discovering word groups in personal Web pages which can be used to find similar information on the WWW
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue of papers from the 6th International World Wide Web conference, held 7-11 Apr 1997, Santa Clara, California
  2. Koch, T.: Experiments with automatic classification of WAIS databases and indexing of WWW : some results from the Nordic WAIS/WWW project (1994) 0.09
    0.08660489 = product of:
      0.12990734 = sum of:
        0.10900013 = weight(_text_:wide in 7209) [ClassicSimilarity], result of:
          0.10900013 = score(doc=7209,freq=4.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.4846142 = fieldWeight in 7209, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7209)
        0.020907203 = product of:
          0.041814405 = sum of:
            0.041814405 = weight(_text_:web in 7209) [ClassicSimilarity], result of:
              0.041814405 = score(doc=7209,freq=2.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.25239927 = fieldWeight in 7209, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7209)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Nordic WAIS/WWW project sponsored by NORDINFO is a joint project between Lund University Library and the National Technological Library of Denmark. It aims to improve the existing networked information discovery and retrieval tools Wide Area Information System (WAIS) and World Wide Web (WWW), and to move towards unifying WWW and WAIS. Details current results focusing on the WAIS side of the project. Describes research into automatic indexing and classification of WAIS sources, development of an orientation tool for WAIS, and development of a WAIS index of WWW resources
  3. Rasmussen, E.M.: Indexing and retrieval for the Web (2002) 0.08
    0.07745902 = product of:
      0.116188526 = sum of:
        0.07707474 = weight(_text_:wide in 4285) [ClassicSimilarity], result of:
          0.07707474 = score(doc=4285,freq=8.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.342674 = fieldWeight in 4285, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4285)
        0.03911379 = product of:
          0.07822758 = sum of:
            0.07822758 = weight(_text_:web in 4285) [ClassicSimilarity], result of:
              0.07822758 = score(doc=4285,freq=28.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.47219574 = fieldWeight in 4285, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4285)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The introduction and growth of the World Wide Web (WWW, or Web) have resulted in a profound change in the way individuals and organizations access information. In terms of volume, nature, and accessibility, the characteristics of electronic information are significantly different from those of even five or six years ago. Control of, and access to, this flood of information rely heavily an automated techniques for indexing and retrieval. According to Gudivada, Raghavan, Grosky, and Kasanagottu (1997, p. 58), "The ability to search and retrieve information from the Web efficiently and effectively is an enabling technology for realizing its full potential." Almost 93 percent of those surveyed consider the Web an "indispensable" Internet technology, second only to e-mail (Graphie, Visualization & Usability Center, 1998). Although there are other ways of locating information an the Web (browsing or following directory structures), 85 percent of users identify Web pages by means of a search engine (Graphie, Visualization & Usability Center, 1998). A more recent study conducted by the Stanford Institute for the Quantitative Study of Society confirms the finding that searching for information is second only to e-mail as an Internet activity (Nie & Ebring, 2000, online). In fact, Nie and Ebring conclude, "... the Internet today is a giant public library with a decidedly commercial tilt. The most widespread use of the Internet today is as an information search utility for products, travel, hobbies, and general information. Virtually all users interviewed responded that they engaged in one or more of these information gathering activities."
    Techniques for automated indexing and information retrieval (IR) have been developed, tested, and refined over the past 40 years, and are well documented (see, for example, Agosti & Smeaton, 1996; BaezaYates & Ribeiro-Neto, 1999a; Frakes & Baeza-Yates, 1992; Korfhage, 1997; Salton, 1989; Witten, Moffat, & Bell, 1999). With the introduction of the Web, and the capability to index and retrieve via search engines, these techniques have been extended to a new environment. They have been adopted, altered, and in some Gases extended to include new methods. "In short, search engines are indispensable for searching the Web, they employ a variety of relatively advanced IR techniques, and there are some peculiar aspects of search engines that make searching the Web different than more conventional information retrieval" (Gordon & Pathak, 1999, p. 145). The environment for information retrieval an the World Wide Web differs from that of "conventional" information retrieval in a number of fundamental ways. The collection is very large and changes continuously, with pages being added, deleted, and altered. Wide variability between the size, structure, focus, quality, and usefulness of documents makes Web documents much more heterogeneous than a typical electronic document collection. The wide variety of document types includes images, video, audio, and scripts, as well as many different document languages. Duplication of documents and sites is common. Documents are interconnected through networks of hyperlinks. Because of the size and dynamic nature of the Web, preprocessing all documents requires considerable resources and is often not feasible, certainly not an the frequent basis required to ensure currency. Query length is usually much shorter than in other environments-only a few words-and user behavior differs from that in other environments. These differences make the Web a novel environment for information retrieval (Baeza-Yates & Ribeiro-Neto, 1999b; Bharat & Henzinger, 1998; Huang, 2000).
  4. Daudaravicius, V.: ¬A framework for keyphrase extraction from scientific journals (2016) 0.07
    0.0653213 = product of:
      0.09798194 = sum of:
        0.07707474 = weight(_text_:wide in 2930) [ClassicSimilarity], result of:
          0.07707474 = score(doc=2930,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.342674 = fieldWeight in 2930, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2930)
        0.020907203 = product of:
          0.041814405 = sum of:
            0.041814405 = weight(_text_:web in 2930) [ClassicSimilarity], result of:
              0.041814405 = score(doc=2930,freq=2.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.25239927 = fieldWeight in 2930, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2930)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  5. Gábor, K.; Zargayouna, H.; Tellier, I.; Buscaldi, D.; Charnois, T.: ¬A typology of semantic relations dedicated to scientific literature analysis (2016) 0.07
    0.0653213 = product of:
      0.09798194 = sum of:
        0.07707474 = weight(_text_:wide in 2933) [ClassicSimilarity], result of:
          0.07707474 = score(doc=2933,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.342674 = fieldWeight in 2933, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2933)
        0.020907203 = product of:
          0.041814405 = sum of:
            0.041814405 = weight(_text_:web in 2933) [ClassicSimilarity], result of:
              0.041814405 = score(doc=2933,freq=2.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.25239927 = fieldWeight in 2933, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2933)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Vortrag, "Semantics, Analytics, Visualisation: Enhancing Scholarly Data Workshop co-located with the 25th International World Wide Web Conference April 11, 2016 - Montreal, Canada", Montreal 2016.
  6. Fauzi, F.; Belkhatir, M.: Multifaceted conceptual image indexing on the world wide web (2013) 0.06
    0.06473547 = product of:
      0.0971032 = sum of:
        0.06606405 = weight(_text_:wide in 2721) [ClassicSimilarity], result of:
          0.06606405 = score(doc=2721,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 2721, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=2721)
        0.031039147 = product of:
          0.062078293 = sum of:
            0.062078293 = weight(_text_:web in 2721) [ClassicSimilarity], result of:
              0.062078293 = score(doc=2721,freq=6.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.37471575 = fieldWeight in 2721, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2721)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this paper, we describe a user-centered design of an automated multifaceted concept-based indexing framework which analyzes the semantics of the Web image contextual information and classifies it into five broad semantic concept facets: signal, object, abstract, scene, and relational; and identifies the semantic relationships between the concepts. An important aspect of our indexing model is that it relates to the users' levels of image descriptions. Also, a major contribution relies on the fact that the classification is performed automatically with the raw image contextual information extracted from any general webpage and is not solely based on image tags like state-of-the-art solutions. Human Language Technology techniques and an external knowledge base are used to analyze the information both syntactically and semantically. Experimental results on a human-annotated Web image collection and corresponding contextual information indicate that our method outperforms empirical frameworks employing tf-idf and location-based tf-idf weighting schemes as well as n-gram indexing in a recall/precision based evaluation framework.
  7. Search Engines and Beyond : Developing efficient knowledge management systems, April 19-20 1999, Boston, Mass (1999) 0.04
    0.03732645 = product of:
      0.055989675 = sum of:
        0.044042703 = weight(_text_:wide in 2596) [ClassicSimilarity], result of:
          0.044042703 = score(doc=2596,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.1958137 = fieldWeight in 2596, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=2596)
        0.011946972 = product of:
          0.023893945 = sum of:
            0.023893945 = weight(_text_:web in 2596) [ClassicSimilarity], result of:
              0.023893945 = score(doc=2596,freq=2.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.14422815 = fieldWeight in 2596, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2596)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Ramana Rao (Inxight, Palo Alto, CA) 7 ± 2 Insights on achieving Effective Information Access Session One: Updates and a twelve month perspective Danny Sullivan (Search Engine Watch, US / England) Portalization and other search trends Carol Tenopir (University of Tennessee) Search realities faced by end users and professional searchers Session Two: Today's search engines and beyond Daniel Hoogterp (Retrieval Technologies, McLean, VA) Effective presentation and utilization of search techniques Rick Kenny (Fulcrum Technologies, Ontario, Canada) Beyond document clustering: The knowledge impact statement Gary Stock (Ingenius, Kalamazoo, MI) Automated change monitoring Gary Culliss (Direct Hit, Wellesley Hills, MA) User popularity ranked search engines Byron Dom (IBM, CA) Automatically finding the best pages on the World Wide Web (CLEVER) Peter Tomassi (LookSmart, San Francisco, CA) Adding human intellect to search technology Session Three: Panel discussion: Human v automated categorization and editing Ev Brenner (New York, NY)- Chairman James Callan (University of Massachusetts, MA) Marc Krellenstein (Northern Light Technology, Cambridge, MA) Dan Miller (Ask Jeeves, Berkeley, CA) Session Four: Updates and a twelve month perspective Steve Arnold (AIT, Harrods Creek, KY) Review: The leading edge in search and retrieval software Ellen Voorhees (NIST, Gaithersburg, MD) TREC update Session Five: Search engines now and beyond Intelligent Agents John Snyder (Muscat, Cambridge, England) Practical issues behind intelligent agents Text summarization Therese Firmin, (Dept of Defense, Ft George G. Meade, MD) The TIPSTER/SUMMAC evaluation of automatic text summarization systems Cross language searching Elizabeth Liddy (TextWise, Syracuse, NY) A conceptual interlingua approach to cross-language retrieval. Video search and retrieval Armon Amir (IBM, Almaden, CA) CueVideo: Modular system for automatic indexing and browsing of video/audio Speech recognition Michael Witbrock (Lycos, Waltham, MA) Retrieval of spoken documents Visualization James A. Wise (Integral Visuals, Richland, WA) Information visualization in the new millennium: Emerging science or passing fashion? Text mining David Evans (Claritech, Pittsburgh, PA) Text mining - towards decision support
  8. Alexander, M.: Retrieving digital data with fuzzy matching (1996) 0.03
    0.029361803 = product of:
      0.088085406 = sum of:
        0.088085406 = weight(_text_:wide in 6961) [ClassicSimilarity], result of:
          0.088085406 = score(doc=6961,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.3916274 = fieldWeight in 6961, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=6961)
      0.33333334 = coord(1/3)
    
    Abstract
    Briefly describes the Excalibur EFS system which makes use of adaptive pattern recognition technology as an aid to automatic indexing and how it is being tested at the British Library for the indexing and retrieval of scanned images from the library's holdings. Notes how Excalibur EFS can support a wide degree of fuzzy searching, compensate for the errors produced by OCR conversion of scanned images, reduce the costs of indexing, and require far less storage space than more traditional indexes
  9. Goller, C.; Löning, J.; Will, T.; Wolff, W.: Automatic document classification : a thourough evaluation of various methods (2000) 0.02
    0.022021351 = product of:
      0.06606405 = sum of:
        0.06606405 = weight(_text_:wide in 5480) [ClassicSimilarity], result of:
          0.06606405 = score(doc=5480,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.29372054 = fieldWeight in 5480, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=5480)
      0.33333334 = coord(1/3)
    
    Abstract
    (Automatic) document classification is generally defined as content-based assignment of one or more predefined categories to documents. Usually, machine learning, statistical pattern recognition, or neural network approaches are used to construct classifiers automatically. In this paper we thoroughly evaluate a wide variety of these methods on a document classification task for German text. We evaluate different feature construction and selection methods and various classifiers. Our main results are: (1) feature selection is necessary not only to reduce learning and classification time, but also to avoid overfitting (even for Support Vector Machines); (2) surprisingly, our morphological analysis does not improve classification quality compared to a letter 5-gram approach; (3) Support Vector Machines are significantly better than all other classification methods
  10. Golub, K.: Automatic subject indexing of text (2019) 0.02
    0.018351128 = product of:
      0.055053383 = sum of:
        0.055053383 = weight(_text_:wide in 5268) [ClassicSimilarity], result of:
          0.055053383 = score(doc=5268,freq=2.0), product of:
            0.22492146 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.050763648 = queryNorm
            0.24476713 = fieldWeight in 5268, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5268)
      0.33333334 = coord(1/3)
    
    Abstract
    Automatic subject indexing addresses problems of scale and sustainability and can be at the same time used to enrich existing metadata records, establish more connections across and between resources from various metadata and resource collec-tions, and enhance consistency of the metadata. In this work, au-tomatic subject indexing focuses on assigning index terms or classes from established knowledge organization systems (KOSs) for subject indexing like thesauri, subject headings systems and classification systems. The following major approaches are dis-cussed, in terms of their similarities and differences, advantages and disadvantages for automatic assigned indexing from KOSs: "text categorization," "document clustering," and "document classification." Text categorization is perhaps the most wide-spread, machine-learning approach with what seems generally good reported performance. Document clustering automatically both creates groups of related documents and extracts names of subjects depicting the group at hand. Document classification re-uses the intellectual effort invested into creating a KOS for sub-ject indexing and even simple string-matching algorithms have been reported to achieve good results, because one concept can be described using a number of different terms, including equiv-alent, related, narrower and broader terms. Finally, applicability of automatic subject indexing to operative information systems and challenges of evaluation are outlined, suggesting the need for more research.
  11. Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval (1986) 0.02
    0.018340731 = product of:
      0.05502219 = sum of:
        0.05502219 = product of:
          0.11004438 = sum of:
            0.11004438 = weight(_text_:22 in 402) [ClassicSimilarity], result of:
              0.11004438 = score(doc=402,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.61904186 = fieldWeight in 402, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=402)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information processing and management. 22(1986) no.6, S.465-476
  12. Hlava, M.M.K.: Automatic indexing : comparing rule-based and statistics-based indexing systems (2005) 0.02
    0.016048139 = product of:
      0.048144415 = sum of:
        0.048144415 = product of:
          0.09628883 = sum of:
            0.09628883 = weight(_text_:22 in 6265) [ClassicSimilarity], result of:
              0.09628883 = score(doc=6265,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.5416616 = fieldWeight in 6265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6265)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information outlook. 9(2005) no.8, S.22-23
  13. Biebricher, N.; Fuhr, N.; Lustig, G.; Schwantner, M.; Knorz, G.: ¬The automatic indexing system AIR/PHYS : from research to application (1988) 0.01
    0.011462957 = product of:
      0.03438887 = sum of:
        0.03438887 = product of:
          0.06877774 = sum of:
            0.06877774 = weight(_text_:22 in 1952) [ClassicSimilarity], result of:
              0.06877774 = score(doc=1952,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.38690117 = fieldWeight in 1952, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1952)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16. 8.1998 12:51:22
  14. Kutschekmanesch, S.; Lutes, B.; Moelle, K.; Thiel, U.; Tzeras, K.: Automated multilingual indexing : a synthesis of rule-based and thesaurus-based methods (1998) 0.01
    0.011462957 = product of:
      0.03438887 = sum of:
        0.03438887 = product of:
          0.06877774 = sum of:
            0.06877774 = weight(_text_:22 in 4157) [ClassicSimilarity], result of:
              0.06877774 = score(doc=4157,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.38690117 = fieldWeight in 4157, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4157)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information und Märkte: 50. Deutscher Dokumentartag 1998, Kongreß der Deutschen Gesellschaft für Dokumentation e.V. (DGD), Rheinische Friedrich-Wilhelms-Universität Bonn, 22.-24. September 1998. Hrsg. von Marlies Ockenfeld u. Gerhard J. Mantwill
  15. Stankovic, R. et al.: Indexing of textual databases based on lexical resources : a case study for Serbian (2016) 0.01
    0.011462957 = product of:
      0.03438887 = sum of:
        0.03438887 = product of:
          0.06877774 = sum of:
            0.06877774 = weight(_text_:22 in 2759) [ClassicSimilarity], result of:
              0.06877774 = score(doc=2759,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.38690117 = fieldWeight in 2759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2759)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    1. 2.2016 18:25:22
  16. McKiernan, G.: Automated categorisation of Web resources : a profile of selected projects, research, products, and services (1996) 0.01
    0.00995581 = product of:
      0.029867431 = sum of:
        0.029867431 = product of:
          0.059734862 = sum of:
            0.059734862 = weight(_text_:web in 2533) [ClassicSimilarity], result of:
              0.059734862 = score(doc=2533,freq=2.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.36057037 = fieldWeight in 2533, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2533)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  17. Shafer, K.: Scorpion Project explores using Dewey to organize the Web (1996) 0.01
    0.00985575 = product of:
      0.02956725 = sum of:
        0.02956725 = product of:
          0.0591345 = sum of:
            0.0591345 = weight(_text_:web in 6750) [ClassicSimilarity], result of:
              0.0591345 = score(doc=6750,freq=4.0), product of:
                0.1656677 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.050763648 = queryNorm
                0.35694647 = fieldWeight in 6750, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6750)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    As the amount of accessible information on the WWW increases, so will the cost of accessing it, even if search servcies remain free, due to the increasing amount of time users will have to spend to find needed items. Considers what the seemingly unorganized Web and the organized world of libraries can offer each other. The OCLC Scorpion Project is attempting to combine indexing and cataloguing, specifically focusing on building tools for automatic subject recognition using the technqiues of library science and information retrieval. If subject headings or concept domains can be automatically assigned to electronic items, improved filtering tools for searching can be produced
  18. Tsujii, J.-I.: Automatic acquisition of semantic collocation from corpora (1995) 0.01
    0.0091703655 = product of:
      0.027511096 = sum of:
        0.027511096 = product of:
          0.05502219 = sum of:
            0.05502219 = weight(_text_:22 in 4709) [ClassicSimilarity], result of:
              0.05502219 = score(doc=4709,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.30952093 = fieldWeight in 4709, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4709)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    31. 7.1996 9:22:19
  19. Riloff, E.: ¬An empirical study of automated dictionary construction for information extraction in three domains (1996) 0.01
    0.0091703655 = product of:
      0.027511096 = sum of:
        0.027511096 = product of:
          0.05502219 = sum of:
            0.05502219 = weight(_text_:22 in 6752) [ClassicSimilarity], result of:
              0.05502219 = score(doc=6752,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.30952093 = fieldWeight in 6752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6752)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    6. 3.1997 16:22:15
  20. Hodges, P.R.: Keyword in title indexes : effectiveness of retrieval in computer searches (1983) 0.01
    0.0080240695 = product of:
      0.024072208 = sum of:
        0.024072208 = product of:
          0.048144415 = sum of:
            0.048144415 = weight(_text_:22 in 5001) [ClassicSimilarity], result of:
              0.048144415 = score(doc=5001,freq=2.0), product of:
                0.17776565 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050763648 = queryNorm
                0.2708308 = fieldWeight in 5001, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5001)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    14. 3.1996 13:22:21