Search (68 results, page 1 of 4)

  • × language_ss:"e"
  • × theme_ss:"Automatisches Klassifizieren"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.05
    0.04621624 = product of:
      0.09243248 = sum of:
        0.06933434 = product of:
          0.20800301 = sum of:
            0.20800301 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.20800301 = score(doc=562,freq=2.0), product of:
                0.37010026 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.043654136 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.005354538 = weight(_text_:in in 562) [ClassicSimilarity], result of:
          0.005354538 = score(doc=562,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.035487194 = score(doc=562,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Document representations for text classification are typically based on the classical Bag-Of-Words paradigm. This approach comes with deficiencies that motivate the integration of features on a higher semantic level than single words. In this paper we propose an enhancement of the classical document representation through concepts extracted from background knowledge. Boosting is used for actual classification. Experimental evaluations on two well known text corpora support our approach through consistent improvement of the results.
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Lindholm, J.; Schönthal, T.; Jansson , K.: Experiences of harvesting Web resources in engineering using automatic classification (2003) 0.01
    0.011077631 = product of:
      0.033232894 = sum of:
        0.014278769 = weight(_text_:in in 4088) [ClassicSimilarity], result of:
          0.014278769 = score(doc=4088,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.24046129 = fieldWeight in 4088, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4088)
        0.018954126 = weight(_text_:und in 4088) [ClassicSimilarity], result of:
          0.018954126 = score(doc=4088,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.19590102 = fieldWeight in 4088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=4088)
      0.33333334 = coord(2/6)
    
    Abstract
    Authors describe the background and the work involved in setting up Engine-e, a Web index that uses automatic classification as a mean for the selection of resources in Engineering. Considerations in offering a robot-generated Web index as a successor to a manually indexed quality-controlled subject gateway are also discussed
    Footnote
    Auch unter: http://www.ariadne.ac.uk/issue37/lindholm/ und http://engine-e.lub.lu.se/
  3. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.01
    0.01106493 = product of:
      0.033194788 = sum of:
        0.012493922 = weight(_text_:in in 5273) [ClassicSimilarity], result of:
          0.012493922 = score(doc=5273,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21040362 = fieldWeight in 5273, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5273)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.04140173 = score(doc=5273,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In text categorization tasks, classification on some class hierarchies has better results than in cases without the hierarchy. Currently, because a large number of documents are divided into several subgroups in a hierarchy, we can appropriately use a hierarchical classification method. However, we have no systematic method to build a hierarchical classification system that performs well with large collections of practical data. In this article, we introduce a new evaluation scheme for internal node classifiers, which can be used effectively to develop a hierarchical classification system. We also show that our method for constructing the hierarchical classification system is very effective, especially for the task of constructing classifiers applied to hierarchy tree with a lot of levels.
    Date
    22. 7.2006 16:24:52
  4. Mengle, S.; Goharian, N.: Passage detection using text classification (2009) 0.01
    0.008572079 = product of:
      0.025716238 = sum of:
        0.010929906 = weight(_text_:in in 2765) [ClassicSimilarity], result of:
          0.010929906 = score(doc=2765,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18406484 = fieldWeight in 2765, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2765)
        0.014786332 = product of:
          0.029572664 = sum of:
            0.029572664 = weight(_text_:22 in 2765) [ClassicSimilarity], result of:
              0.029572664 = score(doc=2765,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.19345059 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Passages can be hidden within a text to circumvent their disallowed transfer. Such release of compartmentalized information is of concern to all corporate and governmental organizations. Passage retrieval is well studied; we posit, however, that passage detection is not. Passage retrieval is the determination of the degree of relevance of blocks of text, namely passages, comprising a document. Rather than determining the relevance of a document in its entirety, passage retrieval determines the relevance of the individual passages. As such, modified traditional information-retrieval techniques compare terms found in user queries with the individual passages to determine a similarity score for passages of interest. In passage detection, passages are classified into predetermined categories. More often than not, passage detection techniques are deployed to detect hidden paragraphs in documents. That is, to hide information, documents are injected with hidden text into passages. Rather than matching query terms against passages to determine their relevance, using text-mining techniques, the passages are classified. Those documents with hidden passages are defined as infected. Thus, simply stated, passage retrieval is the search for passages relevant to a user query, while passage detection is the classification of passages. That is, in passage detection, passages are labeled with one or more categories from a set of predetermined categories. We present a keyword-based dynamic passage approach (KDP) and demonstrate that KDP outperforms statistically significantly (99% confidence) the other document-splitting approaches by 12% to 18% in the passage detection and passage category-prediction tasks. Furthermore, we evaluate the effects of the feature selection, passage length, ambiguous passages, and finally training-data category distribution on passage-detection accuracy.
    Date
    22. 3.2009 19:14:43
  5. Liu, R.-L.: Context recognition for hierarchical text classification (2009) 0.01
    0.008438686 = product of:
      0.025316058 = sum of:
        0.0075724614 = weight(_text_:in in 2760) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=2760,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 2760, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2760)
        0.017743597 = product of:
          0.035487194 = sum of:
            0.035487194 = weight(_text_:22 in 2760) [ClassicSimilarity], result of:
              0.035487194 = score(doc=2760,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.23214069 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Information is often organized as a text hierarchy. A hierarchical text-classification system is thus essential for the management, sharing, and dissemination of information. It aims to automatically classify each incoming document into zero, one, or several categories in the text hierarchy. In this paper, we present a technique called CRHTC (context recognition for hierarchical text classification) that performs hierarchical text classification by recognizing the context of discussion (COD) of each category. A category's COD is governed by its ancestor categories, whose contents indicate contextual backgrounds of the category. A document may be classified into a category only if its content matches the category's COD. CRHTC does not require any trials to manually set parameters, and hence is more portable and easier to implement than other methods. It is empirically evaluated under various conditions. The results show that CRHTC achieves both better and more stable performance than several hierarchical and nonhierarchical text-classification methodologies.
    Date
    22. 3.2009 19:11:54
  6. Khoo, C.S.G.; Ng, K.; Ou, S.: ¬An exploratory study of human clustering of Web pages (2003) 0.01
    0.0068576634 = product of:
      0.02057299 = sum of:
        0.008743925 = weight(_text_:in in 2741) [ClassicSimilarity], result of:
          0.008743925 = score(doc=2741,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14725187 = fieldWeight in 2741, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2741)
        0.011829065 = product of:
          0.02365813 = sum of:
            0.02365813 = weight(_text_:22 in 2741) [ClassicSimilarity], result of:
              0.02365813 = score(doc=2741,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.15476047 = fieldWeight in 2741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2741)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This study seeks to find out how human beings cluster Web pages naturally. Twenty Web pages retrieved by the Northem Light search engine for each of 10 queries were sorted by 3 subjects into categories that were natural or meaningful to them. lt was found that different subjects clustered the same set of Web pages quite differently and created different categories. The average inter-subject similarity of the clusters created was a low 0.27. Subjects created an average of 5.4 clusters for each sorting. The categories constructed can be divided into 10 types. About 1/3 of the categories created were topical. Another 20% of the categories relate to the degree of relevance or usefulness. The rest of the categories were subject-independent categories such as format, purpose, authoritativeness and direction to other sources. The authors plan to develop automatic methods for categorizing Web pages using the common categories created by the subjects. lt is hoped that the techniques developed can be used by Web search engines to automatically organize Web pages retrieved into categories that are natural to users. 1. Introduction The World Wide Web is an increasingly important source of information for people globally because of its ease of access, the ease of publishing, its ability to transcend geographic and national boundaries, its flexibility and heterogeneity and its dynamic nature. However, Web users also find it increasingly difficult to locate relevant and useful information in this vast information storehouse. Web search engines, despite their scope and power, appear to be quite ineffective. They retrieve too many pages, and though they attempt to rank retrieved pages in order of probable relevance, often the relevant documents do not appear in the top-ranked 10 or 20 documents displayed. Several studies have found that users do not know how to use the advanced features of Web search engines, and do not know how to formulate and re-formulate queries. Users also typically exert minimal effort in performing, evaluating and refining their searches, and are unwilling to scan more than 10 or 20 items retrieved (Jansen, Spink, Bateman & Saracevic, 1998). This suggests that the conventional ranked-list display of search results does not satisfy user requirements, and that better ways of presenting and summarizing search results have to be developed. One promising approach is to group retrieved pages into clusters or categories to allow users to navigate immediately to the "promising" clusters where the most useful Web pages are likely to be located. This approach has been adopted by a number of search engines (notably Northem Light) and search agents.
    Date
    12. 9.2004 9:56:22
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  7. Subramanian, S.; Shafer, K.E.: Clustering (2001) 0.01
    0.0059145326 = product of:
      0.035487194 = sum of:
        0.035487194 = product of:
          0.07097439 = sum of:
            0.07097439 = weight(_text_:22 in 1046) [ClassicSimilarity], result of:
              0.07097439 = score(doc=1046,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.46428138 = fieldWeight in 1046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1046)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    5. 5.2003 14:17:22
  8. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.00
    0.003450144 = product of:
      0.020700864 = sum of:
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.04140173 = score(doc=2560,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 9.2008 18:31:54
  9. Mukhopadhyay, S.; Peng, S.; Raje, R.; Palakal, M.; Mostafa, J.: Multi-agent information classification using dynamic acquaintance lists (2003) 0.00
    0.0023611297 = product of:
      0.014166778 = sum of:
        0.014166778 = weight(_text_:in in 1755) [ClassicSimilarity], result of:
          0.014166778 = score(doc=1755,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23857531 = fieldWeight in 1755, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1755)
      0.16666667 = coord(1/6)
    
    Abstract
    There has been considerable interest in recent years in providing automated information services, such as information classification, by means of a society of collaborative agents. These agents augment each other's knowledge structures (e.g., the vocabularies) and assist each other in providing efficient information services to a human user. However, when the number of agents present in the society increases, exhaustive communication and collaboration among agents result in a [arge communication overhead and increased delays in response time. This paper introduces a method to achieve selective interaction with a relatively small number of potentially useful agents, based an simple agent modeling and acquaintance lists. The key idea presented here is that the acquaintance list of an agent, representing a small number of other agents to be collaborated with, is dynamically adjusted. The best acquaintances are automatically discovered using a learning algorithm, based an the past history of collaboration. Experimental results are presented to demonstrate that such dynamically learned acquaintance lists can lead to high quality of classification, while significantly reducing the delay in response time.
  10. Sebastiani, F.: Machine learning in automated text categorization (2002) 0.00
    0.0023611297 = product of:
      0.014166778 = sum of:
        0.014166778 = weight(_text_:in in 3389) [ClassicSimilarity], result of:
          0.014166778 = score(doc=3389,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23857531 = fieldWeight in 3389, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3389)
      0.16666667 = coord(1/6)
    
    Abstract
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last 10 years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based an machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert labor power, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely, document representation, classifier construction, and classifier evaluation.
  11. Cui, H.; Heidorn, P.B.; Zhang, H.: ¬An approach to automatic classification of text for information retrieval (2002) 0.00
    0.0023281053 = product of:
      0.013968632 = sum of:
        0.013968632 = weight(_text_:in in 174) [ClassicSimilarity], result of:
          0.013968632 = score(doc=174,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23523843 = fieldWeight in 174, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=174)
      0.16666667 = coord(1/6)
    
    Abstract
    In this paper, we explore an approach to make better use of semi-structured documents in information retrieval in the domain of biology. Using machine learning techniques, we make those inherent structures explicit by XML markups. This marking up has great potentials in improving task performance in specimen identification and the usability of online flora and fauna.
  12. Pong, J.Y.-H.; Kwok, R.C.-W.; Lau, R.Y.-K.; Hao, J.-X.; Wong, P.C.-C.: ¬A comparative study of two automatic document classification methods in a library setting (2008) 0.00
    0.0022310577 = product of:
      0.0133863455 = sum of:
        0.0133863455 = weight(_text_:in in 2532) [ClassicSimilarity], result of:
          0.0133863455 = score(doc=2532,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22543246 = fieldWeight in 2532, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2532)
      0.16666667 = coord(1/6)
    
    Abstract
    In current library practice, trained human experts usually carry out document cataloguing and indexing based on a manual approach. With the explosive growth in the number of electronic documents available on the Internet and digital libraries, it is increasingly difficult for library practitioners to categorize both electronic documents and traditional library materials using just a manual approach. To improve the effectiveness and efficiency of document categorization at the library setting, more in-depth studies of using automatic document classification methods to categorize library items are required. Machine learning research has advanced rapidly in recent years. However, applying machine learning techniques to improve library practice is still a relatively unexplored area. This paper illustrates the design and development of a machine learning based automatic document classification system to alleviate the manual categorization problem encountered within the library setting. Two supervised machine learning algorithms have been tested. Our empirical tests show that supervised machine learning algorithms in general, and the k-nearest neighbours (KNN) algorithm in particular, can be used to develop an effective document classification system to enhance current library practice. Moreover, some concrete recommendations regarding how to practically apply the KNN algorithm to develop automatic document classification in a library setting are made. To our best knowledge, this is the first in-depth study of applying the KNN algorithm to automatic document classification based on the widely used LCC classification scheme adopted by many large libraries.
  13. Chung, Y.-M.; Noh, Y.-H.: Developing a specialized directory system by automatically classifying Web documents (2003) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 1566) [ClassicSimilarity], result of:
          0.013115887 = score(doc=1566,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 1566, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1566)
      0.16666667 = coord(1/6)
    
    Abstract
    This study developed a specialized directory system using an automatic classification technique. Economics was selected as the subject field for the classification experiments with Web documents. The classification scheme of the directory follows the DDC, and subject terms representing each class number or subject category were selected from the DDC table to construct a representative term dictionary. In collecting and classifying the Web documents, various strategies were tested in order to find the optimal thresholds. In the classification experiments, Web documents in economics were classified into a total of 757 hierarchical subject categories built from the DDC scheme. The first and second experiments using the representative term dictionary resulted in relatively high precision ratios of 77 and 60%, respectively. The third experiment employing a machine learning-based k-nearest neighbours (kNN) classifier in a closed experimental setting achieved a precision ratio of 96%. This implies that it is possible to enhance the classification performance by applying a hybrid method combining a dictionary-based technique and a kNN classifier
  14. Yoon, Y.; Lee, G.G.: Efficient implementation of associative classifiers for document classification (2007) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 909) [ClassicSimilarity], result of:
          0.013115887 = score(doc=909,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 909, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=909)
      0.16666667 = coord(1/6)
    
    Abstract
    In practical text classification tasks, the ability to interpret the classification result is as important as the ability to classify exactly. Associative classifiers have many favorable characteristics such as rapid training, good classification accuracy, and excellent interpretation. However, associative classifiers also have some obstacles to overcome when they are applied in the area of text classification. The target text collection generally has a very high dimension, thus the training process might take a very long time. We propose a feature selection based on the mutual information between the word and class variables to reduce the space dimension of the associative classifiers. In addition, the training process of the associative classifier produces a huge amount of classification rules, which makes the prediction with a new document ineffective. We resolve this by introducing a new efficient method for storing and pruning classification rules. This method can also be used when predicting a test document. Experimental results using the 20-newsgroups dataset show many benefits of the associative classification in both training and predicting when applied to a real world problem.
    Footnote
    Beitrag in: Special issue on AIRS2005: Information Retrieval Research in Asia
  15. Zhou, G.D.; Zhang, M.; Ji, D.H.; Zhu, Q.M.: Hierarchical learning strategy in semantic relation extraction (2008) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 2077) [ClassicSimilarity], result of:
          0.013115887 = score(doc=2077,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 2077, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2077)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper proposes a novel hierarchical learning strategy to deal with the data sparseness problem in semantic relation extraction by modeling the commonality among related classes. For each class in the hierarchy either manually predefined or automatically clustered, a discriminative function is determined in a top-down way. As the upper-level class normally has much more positive training examples than the lower-level class, the corresponding discriminative function can be determined more reliably and guide the discriminative function learning in the lower-level one more effectively, which otherwise might suffer from limited training data. In this paper, two classifier learning approaches, i.e. the simple perceptron algorithm and the state-of-the-art Support Vector Machines, are applied using the hierarchical learning strategy. Moreover, several kinds of class hierarchies either manually predefined or automatically clustered are explored and compared. Evaluation on the ACE RDC 2003 and 2004 corpora shows that the hierarchical learning strategy much improves the performance on least- and medium-frequent relations.
  16. Montesi, M.; Navarrete, T.: Classifying web genres in context : A case study documenting the web genres used by a software engineer (2008) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 2100) [ClassicSimilarity], result of:
          0.013115887 = score(doc=2100,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 2100, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
      0.16666667 = coord(1/6)
    
    Abstract
    This case study analyzes the Internet-based resources that a software engineer uses in his daily work. Methodologically, we studied the web browser history of the participant, classifying all the web pages he had seen over a period of 12 days into web genres. We interviewed him before and after the analysis of the web browser history. In the first interview, he spoke about his general information behavior; in the second, he commented on each web genre, explaining why and how he used them. As a result, three approaches allow us to describe the set of 23 web genres obtained: (a) the purposes they serve for the participant; (b) the role they play in the various work and search phases; (c) and the way they are used in combination with each other. Further observations concern the way the participant assesses quality of web-based resources, and his information behavior as a software engineer.
  17. Wu, M.; Fuller, M.; Wilkinson, R.: Using clustering and classification approaches in interactive retrieval (2001) 0.00
    0.0020823204 = product of:
      0.012493922 = sum of:
        0.012493922 = weight(_text_:in in 2666) [ClassicSimilarity], result of:
          0.012493922 = score(doc=2666,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21040362 = fieldWeight in 2666, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.109375 = fieldNorm(doc=2666)
      0.16666667 = coord(1/6)
    
  18. Figuerola, C.G.; Rodríguez, A.F.Z.; Berrocal, J.L.A.: Automatic vs manual categorisation of documents in Spanish (2001) 0.00
    0.0020823204 = product of:
      0.012493922 = sum of:
        0.012493922 = weight(_text_:in in 4475) [ClassicSimilarity], result of:
          0.012493922 = score(doc=4475,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21040362 = fieldWeight in 4475, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4475)
      0.16666667 = coord(1/6)
    
    Abstract
    Automatic categorisation can be understood as a learning process during which a program recognises the characteristics that distinguish each category or class from others, i.e. those characteristics which the documents should have in order to belong to that category. As yet few experiments have been carried out with documents in Spanish. Here we show the possibilities of elaborating pattern vectors that include the characteristics of different classes or categories of documents, using techniques based on those applied to the expansion of queries by relevance; likewise, the results of applying these techniques to a collection of documents in Spanish are given. The same collection of documents was categorised manually and the results of both procedures were compared.
  19. Drori, O.; Alon, N.: Using document classification for displaying search results (2003) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 1565) [ClassicSimilarity], result of:
          0.011973113 = score(doc=1565,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 1565, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1565)
      0.16666667 = coord(1/6)
    
    Abstract
    In this paper, four self-developed user interfaces that display document search results using different methods were compared. In order to create the four interfaces, two information elements: document categories and lines from the document were used. A user study compared the four interfaces. It was found that the category addition to the interface was beneficial in both measurable and subjective measures. It was also found that displaying the relevant lines from the document increased the effectiveness and shortened the search time in all cases and tasks. It was found that the participants preferred the interface containing categories and relevant lines to all other interfaces checked. It was also the fastest in the objective time measurement. Another sub-research that was conducted showed that the most important parameter for the users was the confidence level that the answer was accurate, and the least important parameter was the feeling of comfort while conducting a search
  20. Duwairi, R.M.: Machine learning for Arabic text categorization (2006) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 5115) [ClassicSimilarity], result of:
          0.011973113 = score(doc=5115,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 5115, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5115)
      0.16666667 = coord(1/6)
    
    Abstract
    In this article we propose a distance-based classifier for categorizing Arabic text. Each category is represented as a vector of words in an m-dimensional space, and documents are classified on the basis of their closeness to feature vectors of categories. The classifier, in its learning phase, scans the set of training documents to extract features of categories that capture inherent category-specific properties; in its testing phase the classifier uses previously determined category-specific features to categorize unclassified documents. Stemming was used to reduce the dimensionality of feature vectors of documents. The accuracy of the classifier was tested by carrying out several categorization tasks on an in-house collected Arabic corpus. The results show that the proposed classifier is very accurate and robust.