Search (19 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Automatisches Klassifizieren"
  • × type_ss:"a"
  • × year_i:[2000 TO 2010}
  1. Khoo, C.S.G.; Ng, K.; Ou, S.: ¬An exploratory study of human clustering of Web pages (2003) 0.15
    0.14524546 = product of:
      0.2178682 = sum of:
        0.075914174 = weight(_text_:search in 2741) [ClassicSimilarity], result of:
          0.075914174 = score(doc=2741,freq=16.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.43445963 = fieldWeight in 2741, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2741)
        0.14195402 = sum of:
          0.11470887 = weight(_text_:engines in 2741) [ClassicSimilarity], result of:
            0.11470887 = score(doc=2741,freq=8.0), product of:
              0.25542772 = queryWeight, product of:
                5.080822 = idf(docFreq=746, maxDocs=44218)
                0.05027291 = queryNorm
              0.44908544 = fieldWeight in 2741, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                5.080822 = idf(docFreq=746, maxDocs=44218)
                0.03125 = fieldNorm(doc=2741)
          0.027245143 = weight(_text_:22 in 2741) [ClassicSimilarity], result of:
            0.027245143 = score(doc=2741,freq=2.0), product of:
              0.17604718 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05027291 = queryNorm
              0.15476047 = fieldWeight in 2741, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2741)
      0.6666667 = coord(2/3)
    
    Abstract
    This study seeks to find out how human beings cluster Web pages naturally. Twenty Web pages retrieved by the Northem Light search engine for each of 10 queries were sorted by 3 subjects into categories that were natural or meaningful to them. lt was found that different subjects clustered the same set of Web pages quite differently and created different categories. The average inter-subject similarity of the clusters created was a low 0.27. Subjects created an average of 5.4 clusters for each sorting. The categories constructed can be divided into 10 types. About 1/3 of the categories created were topical. Another 20% of the categories relate to the degree of relevance or usefulness. The rest of the categories were subject-independent categories such as format, purpose, authoritativeness and direction to other sources. The authors plan to develop automatic methods for categorizing Web pages using the common categories created by the subjects. lt is hoped that the techniques developed can be used by Web search engines to automatically organize Web pages retrieved into categories that are natural to users. 1. Introduction The World Wide Web is an increasingly important source of information for people globally because of its ease of access, the ease of publishing, its ability to transcend geographic and national boundaries, its flexibility and heterogeneity and its dynamic nature. However, Web users also find it increasingly difficult to locate relevant and useful information in this vast information storehouse. Web search engines, despite their scope and power, appear to be quite ineffective. They retrieve too many pages, and though they attempt to rank retrieved pages in order of probable relevance, often the relevant documents do not appear in the top-ranked 10 or 20 documents displayed. Several studies have found that users do not know how to use the advanced features of Web search engines, and do not know how to formulate and re-formulate queries. Users also typically exert minimal effort in performing, evaluating and refining their searches, and are unwilling to scan more than 10 or 20 items retrieved (Jansen, Spink, Bateman & Saracevic, 1998). This suggests that the conventional ranked-list display of search results does not satisfy user requirements, and that better ways of presenting and summarizing search results have to be developed. One promising approach is to group retrieved pages into clusters or categories to allow users to navigate immediately to the "promising" clusters where the most useful Web pages are likely to be located. This approach has been adopted by a number of search engines (notably Northem Light) and search agents.
    Date
    12. 9.2004 9:56:22
  2. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.07
    0.06685372 = product of:
      0.10028057 = sum of:
        0.07984671 = product of:
          0.23954013 = sum of:
            0.23954013 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.23954013 = score(doc=562,freq=2.0), product of:
                0.4262143 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05027291 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.040867712 = score(doc=562,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  3. Mengle, S.; Goharian, N.: Passage detection using text classification (2009) 0.03
    0.03371857 = product of:
      0.050577857 = sum of:
        0.03354964 = weight(_text_:search in 2765) [ClassicSimilarity], result of:
          0.03354964 = score(doc=2765,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 2765, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2765)
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 2765) [ClassicSimilarity], result of:
              0.03405643 = score(doc=2765,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 2765, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2765)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Passages can be hidden within a text to circumvent their disallowed transfer. Such release of compartmentalized information is of concern to all corporate and governmental organizations. Passage retrieval is well studied; we posit, however, that passage detection is not. Passage retrieval is the determination of the degree of relevance of blocks of text, namely passages, comprising a document. Rather than determining the relevance of a document in its entirety, passage retrieval determines the relevance of the individual passages. As such, modified traditional information-retrieval techniques compare terms found in user queries with the individual passages to determine a similarity score for passages of interest. In passage detection, passages are classified into predetermined categories. More often than not, passage detection techniques are deployed to detect hidden paragraphs in documents. That is, to hide information, documents are injected with hidden text into passages. Rather than matching query terms against passages to determine their relevance, using text-mining techniques, the passages are classified. Those documents with hidden passages are defined as infected. Thus, simply stated, passage retrieval is the search for passages relevant to a user query, while passage detection is the classification of passages. That is, in passage detection, passages are labeled with one or more categories from a set of predetermined categories. We present a keyword-based dynamic passage approach (KDP) and demonstrate that KDP outperforms statistically significantly (99% confidence) the other document-splitting approaches by 12% to 18% in the passage detection and passage category-prediction tasks. Furthermore, we evaluate the effects of the feature selection, passage length, ambiguous passages, and finally training-data category distribution on passage-detection accuracy.
    Date
    22. 3.2009 19:14:43
  4. Ozmutlu, S.; Cosar, G.C.: Analyzing the results of automatic new topic identification (2008) 0.03
    0.030007713 = product of:
      0.09002314 = sum of:
        0.09002314 = weight(_text_:search in 2604) [ClassicSimilarity], result of:
          0.09002314 = score(doc=2604,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.51520574 = fieldWeight in 2604, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2604)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. Recently, various studies have focused on new topic identification/session identification of search engine transaction logs, and several problems regarding the estimation of topic shifts and continuations were observed in these studies. This study aims to analyze the reasons for the problems that were encountered as a result of applying automatic new topic identification. Design/methodology/approach - Measures, such as cleaning the data of common words and analyzing the errors of automatic new topic identification, are applied to eliminate the problems in estimating topic shifts and continuations. Findings - The findings show that the resulting errors of automatic new topic identification have a pattern, and further research is required to improve the performance of automatic new topic identification. Originality/value - Improving the performance of automatic new topic identification would be valuable to search engine designers, so that they can develop new clustering and query recommendation algorithms, as well as custom-tailored graphical user interfaces for search engine users.
  5. Drori, O.; Alon, N.: Using document classification for displaying search results (2003) 0.03
    0.026839714 = product of:
      0.08051914 = sum of:
        0.08051914 = weight(_text_:search in 1565) [ClassicSimilarity], result of:
          0.08051914 = score(doc=1565,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 1565, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1565)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, four self-developed user interfaces that display document search results using different methods were compared. In order to create the four interfaces, two information elements: document categories and lines from the document were used. A user study compared the four interfaces. It was found that the category addition to the interface was beneficial in both measurable and subjective measures. It was also found that displaying the relevant lines from the document increased the effectiveness and shortened the search time in all cases and tasks. It was found that the participants preferred the interface containing categories and relevant lines to all other interfaces checked. It was also the fastest in the objective time measurement. Another sub-research that was conducted showed that the most important parameter for the users was the confidence level that the answer was accurate, and the least important parameter was the feeling of comfort while conducting a search
  6. Reiner, U.: DDC-based search in the data of the German National Bibliography (2008) 0.02
    0.023243874 = product of:
      0.06973162 = sum of:
        0.06973162 = weight(_text_:search in 2166) [ClassicSimilarity], result of:
          0.06973162 = score(doc=2166,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.39907667 = fieldWeight in 2166, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2166)
      0.33333334 = coord(1/3)
    
    Abstract
    In 2004, the German National Library began to classify title records of the German National Bibliography according to subject groups based on the divisions of the Dewey Decimal Classification (DDC). Since 2006, all titles of the main series of the German National Bibliography are classified in strict compliance with the DDC. On this basis, an enhanced DDC-based search can be realized - e.g., searching the data of the German National Bibliography for title records using number components of synthesized classification numbers or searching for DDC numbers using unclassified title records. This paper gives an account of the current research and development of the DDC-based search. The work is conducted in the VZG project Colibri that focuses on the automatic analysis of DDC-synthesized numbers and the automatic classification of bibliographic title records.
  7. Yao, H.; Etzkorn, L.H.; Virani, S.: Automated classification and retrieval of reusable software components (2008) 0.02
    0.019369897 = product of:
      0.058109686 = sum of:
        0.058109686 = weight(_text_:search in 1382) [ClassicSimilarity], result of:
          0.058109686 = score(doc=1382,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.33256388 = fieldWeight in 1382, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1382)
      0.33333334 = coord(1/3)
    
    Abstract
    The authors describe their research which improves software reuse by using an automated approach to semantically search for and retrieve reusable software components in large software component repositories and on the World Wide Web (WWW). Using automation and smart (semantic) techniques, their approach speeds up the search and retrieval of reusable software components, while retaining good accuracy, and therefore improves the affordability of software reuse. A program understanding of software components and natural language understanding of user queries was employed. Then the software component descriptions were compared by matching the resulting semantic representations of the user queries to the semantic representations of the software components to search for software components that best match the user queries. A proof of concept system was developed to test the authors' approach. The results of this proof of concept system were compared to human experts, and statistical analysis was performed on the collected experimental data. The results from these experiments demonstrate that this automated semantic-based approach for software reusable component classification and retrieval is successful when compared to the labor-intensive results from the experts, thus showing that this approach can significantly benefit software reuse classification and retrieval.
  8. Hagedorn, K.; Chapman, S.; Newman, D.: Enhancing search and browse using automated clustering of subject metadata (2007) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 1168) [ClassicSimilarity], result of:
          0.056935627 = score(doc=1168,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 1168, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1168)
      0.33333334 = coord(1/3)
    
    Abstract
    The Web puzzle of online information resources often hinders end-users from effective and efficient access to these resources. Clustering resources into appropriate subject-based groupings may help alleviate these difficulties, but will it work with heterogeneous material? The University of Michigan and the University of California Irvine joined forces to test automatically enhancing metadata records using the Topic Modeling algorithm on the varied OAIster corpus. We created labels for the resulting clusters of metadata records, matched the clusters to an in-house classification system, and developed a prototype that would showcase methods for search and retrieval using the enhanced records. Results indicated that while the algorithm was somewhat time-intensive to run and using a local classification scheme had its drawbacks, precise clustering of records was achieved and the prototype interface proved that faceted classification could be powerful in helping end-users find resources.
  9. Choi, B.; Peng, X.: Dynamic and hierarchical classification of Web pages (2004) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 2555) [ClassicSimilarity], result of:
          0.056935627 = score(doc=2555,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 2555, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2555)
      0.33333334 = coord(1/3)
    
    Abstract
    Automatic classification of Web pages is an effective way to organise the vast amount of information and to assist in retrieving relevant information from the Internet. Although many automatic classification systems have been proposed, most of them ignore the conflict between the fixed number of categories and the growing number of Web pages being added into the systems. They also require searching through all existing categories to make any classification. This article proposes a dynamic and hierarchical classification system that is capable of adding new categories as required, organising the Web pages into a tree structure, and classifying Web pages by searching through only one path of the tree. The proposed single-path search technique reduces the search complexity from (n) to (log(n)). Test results show that the system improves the accuracy of classification by 6 percent in comparison to related systems. The dynamic-category expansion technique also achieves satisfying results for adding new categories into the system as required.
  10. Golub, K.; Lykke, M.: Automated classification of web pages in hierarchical browsing (2009) 0.02
    0.015815454 = product of:
      0.04744636 = sum of:
        0.04744636 = weight(_text_:search in 3614) [ClassicSimilarity], result of:
          0.04744636 = score(doc=3614,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 3614, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3614)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this study is twofold: to investigate whether it is meaningful to use the Engineering Index (Ei) classification scheme for browsing, and then, if proven useful, to investigate the performance of an automated classification algorithm based on the Ei classification scheme. Design/methodology/approach - A user study was conducted in which users solved four controlled searching tasks. The users browsed the Ei classification scheme in order to examine the suitability of the classification systems for browsing. The classification algorithm was evaluated by the users who judged the correctness of the automatically assigned classes. Findings - The study showed that the Ei classification scheme is suited for browsing. Automatically assigned classes were on average partly correct, with some classes working better than others. Success of browsing showed to be correlated and dependent on classification correctness. Research limitations/implications - Further research should address problems of disparate evaluations of one and the same web page. Additional reasons behind browsing failures in the Ei classification scheme also need further investigation. Practical implications - Improvements for browsing were identified: describing class captions and/or listing their subclasses from start; allowing for searching for words from class captions with synonym search (easily provided for Ei since the classes are mapped to thesauri terms); when searching for class captions, returning the hierarchical tree expanded around the class in which caption the search term is found. The need for improvements of classification schemes was also indicated. Originality/value - A user-based evaluation of automated subject classification in the context of browsing has not been conducted before; hence the study also presents new findings concerning methodology.
  11. Miyamoto, S.: Information clustering based an fuzzy multisets (2003) 0.02
    0.015656501 = product of:
      0.0469695 = sum of:
        0.0469695 = weight(_text_:search in 1071) [ClassicSimilarity], result of:
          0.0469695 = score(doc=1071,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.2688082 = fieldWeight in 1071, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1071)
      0.33333334 = coord(1/3)
    
    Abstract
    A fuzzy multiset model for information clustering is proposed with application to information retrieval on the World Wide Web. Noting that a search engine retrieves multiple occurrences of the same subjects with possibly different degrees of relevance, we observe that fuzzy multisets provide an appropriate model of information retrieval on the WWW. Information clustering which means both term clustering and document clustering is considered. Three methods of the hard c-means, fuzzy c-means, and an agglomerative method using cluster centers are proposed. Two distances between fuzzy multisets and algorithms for calculating cluster centers are defined. Theoretical properties concerning the clustering algorithms are studied. Illustrative examples are given to show how the algorithms work.
  12. Subramanian, S.; Shafer, K.E.: Clustering (2001) 0.01
    0.013622571 = product of:
      0.040867712 = sum of:
        0.040867712 = product of:
          0.081735425 = sum of:
            0.081735425 = weight(_text_:22 in 1046) [ClassicSimilarity], result of:
              0.081735425 = score(doc=1046,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.46428138 = fieldWeight in 1046, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1046)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 5.2003 14:17:22
  13. Finn, A.; Kushmerick, N.: Learning to classify documents according to genre (2006) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 6010) [ClassicSimilarity], result of:
          0.04025957 = score(doc=6010,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 6010, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=6010)
      0.33333334 = coord(1/3)
    
    Abstract
    Current document-retrieval tools succeed in locating large numbers of documents relevant to a given query. While search results may be relevant according to the topic of the documents, it is more difficult to identify which of the relevant documents are most suitable for a particular user. Automatic genre analysis (i.e., the ability to distinguish documents according to style) would be a useful tool for identifying documents that are most suitable for a particular user. We investigate the use of machine learning for automatic genre classification. We introduce the idea of domain transfer-genre classifiers should be reusable across multiple topics-which does not arise in standard text classification. We investigate different features for building genre classifiers and their ability to transfer across multiple-topic domains. We also show how different feature-sets can be used in conjunction with each other to improve performance and reduce the number of documents that need to be labeled.
  14. Montesi, M.; Navarrete, T.: Classifying web genres in context : A case study documenting the web genres used by a software engineer (2008) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 2100) [ClassicSimilarity], result of:
          0.04025957 = score(doc=2100,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 2100, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
      0.33333334 = coord(1/3)
    
    Abstract
    This case study analyzes the Internet-based resources that a software engineer uses in his daily work. Methodologically, we studied the web browser history of the participant, classifying all the web pages he had seen over a period of 12 days into web genres. We interviewed him before and after the analysis of the web browser history. In the first interview, he spoke about his general information behavior; in the second, he commented on each web genre, explaining why and how he used them. As a result, three approaches allow us to describe the set of 23 web genres obtained: (a) the purposes they serve for the participant; (b) the role they play in the various work and search phases; (c) and the way they are used in combination with each other. Further observations concern the way the participant assesses quality of web-based resources, and his information behavior as a software engineer.
  15. Peng, F.; Huang, X.: Machine learning for Asian language text classification (2007) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 831) [ClassicSimilarity], result of:
          0.03354964 = score(doc=831,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 831, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=831)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this research is to compare several machine learning techniques on the task of Asian language text classification, such as Chinese and Japanese where no word boundary information is available in written text. The paper advocates a simple language modeling based approach for this task. Design/methodology/approach - Naïve Bayes, maximum entropy model, support vector machines, and language modeling approaches were implemented and were applied to Chinese and Japanese text classification. To investigate the influence of word segmentation, different word segmentation approaches were investigated and applied to Chinese text. A segmentation-based approach was compared with the non-segmentation-based approach. Findings - There were two findings: the experiments show that statistical language modeling can significantly outperform standard techniques, given the same set of features; and it was found that classification with word level features normally yields improved classification performance, but that classification performance is not monotonically related to segmentation accuracy. In particular, classification performance may initially improve with increased segmentation accuracy, but eventually classification performance stops improving, and can in fact even decrease, after a certain level of segmentation accuracy. Practical implications - Apply the findings to real web text classification is ongoing work. Originality/value - The paper is very relevant to Chinese and Japanese information processing, e.g. webpage classification, web search.
  16. Lim, C.S.; Lee, K.J.; Kim, G.C.: Multiple sets of features for automatic genre classification of web documents (2005) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 1048) [ClassicSimilarity], result of:
          0.03354964 = score(doc=1048,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 1048, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1048)
      0.33333334 = coord(1/3)
    
    Abstract
    With the increase of information on the Web, it is difficult to find desired information quickly out of the documents retrieved by a search engine. One way to solve this problem is to classify web documents according to various criteria. Most document classification has been focused on a subject or a topic of a document. A genre or a style is another view of a document different from a subject or a topic. The genre is also a criterion to classify documents. In this paper, we suggest multiple sets of features to classify genres of web documents. The basic set of features, which have been proposed in the previous studies, is acquired from the textual properties of documents, such as the number of sentences, the number of a certain word, etc. However, web documents are different from textual documents in that they contain URL and HTML tags within the pages. We introduce new sets of features specific to web documents, which are extracted from URL and HTML tags. The present work is an attempt to evaluate the performance of the proposed sets of features, and to discuss their characteristics. Finally, we conclude which is an appropriate set of features in automatic genre classification of web documents.
  17. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.01
    0.007946501 = product of:
      0.0238395 = sum of:
        0.0238395 = product of:
          0.047679 = sum of:
            0.047679 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.047679 = score(doc=5273,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 16:24:52
  18. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.01
    0.007946501 = product of:
      0.0238395 = sum of:
        0.0238395 = product of:
          0.047679 = sum of:
            0.047679 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.047679 = score(doc=2560,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2008 18:31:54
  19. Liu, R.-L.: Context recognition for hierarchical text classification (2009) 0.01
    0.0068112854 = product of:
      0.020433856 = sum of:
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 2760) [ClassicSimilarity], result of:
              0.040867712 = score(doc=2760,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2009 19:11:54