Search (34 results, page 2 of 2)

  • × language_ss:"e"
  • × theme_ss:"Automatisches Klassifizieren"
  • × type_ss:"a"
  1. Montesi, M.; Navarrete, T.: Classifying web genres in context : A case study documenting the web genres used by a software engineer (2008) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 2100) [ClassicSimilarity], result of:
          0.04025957 = score(doc=2100,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 2100, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
      0.33333334 = coord(1/3)
    
    Abstract
    This case study analyzes the Internet-based resources that a software engineer uses in his daily work. Methodologically, we studied the web browser history of the participant, classifying all the web pages he had seen over a period of 12 days into web genres. We interviewed him before and after the analysis of the web browser history. In the first interview, he spoke about his general information behavior; in the second, he commented on each web genre, explaining why and how he used them. As a result, three approaches allow us to describe the set of 23 web genres obtained: (a) the purposes they serve for the participant; (b) the role they play in the various work and search phases; (c) and the way they are used in combination with each other. Further observations concern the way the participant assesses quality of web-based resources, and his information behavior as a software engineer.
  2. Peng, F.; Huang, X.: Machine learning for Asian language text classification (2007) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 831) [ClassicSimilarity], result of:
          0.03354964 = score(doc=831,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 831, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=831)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this research is to compare several machine learning techniques on the task of Asian language text classification, such as Chinese and Japanese where no word boundary information is available in written text. The paper advocates a simple language modeling based approach for this task. Design/methodology/approach - Naïve Bayes, maximum entropy model, support vector machines, and language modeling approaches were implemented and were applied to Chinese and Japanese text classification. To investigate the influence of word segmentation, different word segmentation approaches were investigated and applied to Chinese text. A segmentation-based approach was compared with the non-segmentation-based approach. Findings - There were two findings: the experiments show that statistical language modeling can significantly outperform standard techniques, given the same set of features; and it was found that classification with word level features normally yields improved classification performance, but that classification performance is not monotonically related to segmentation accuracy. In particular, classification performance may initially improve with increased segmentation accuracy, but eventually classification performance stops improving, and can in fact even decrease, after a certain level of segmentation accuracy. Practical implications - Apply the findings to real web text classification is ongoing work. Originality/value - The paper is very relevant to Chinese and Japanese information processing, e.g. webpage classification, web search.
  3. Lim, C.S.; Lee, K.J.; Kim, G.C.: Multiple sets of features for automatic genre classification of web documents (2005) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 1048) [ClassicSimilarity], result of:
          0.03354964 = score(doc=1048,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 1048, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1048)
      0.33333334 = coord(1/3)
    
    Abstract
    With the increase of information on the Web, it is difficult to find desired information quickly out of the documents retrieved by a search engine. One way to solve this problem is to classify web documents according to various criteria. Most document classification has been focused on a subject or a topic of a document. A genre or a style is another view of a document different from a subject or a topic. The genre is also a criterion to classify documents. In this paper, we suggest multiple sets of features to classify genres of web documents. The basic set of features, which have been proposed in the previous studies, is acquired from the textual properties of documents, such as the number of sentences, the number of a certain word, etc. However, web documents are different from textual documents in that they contain URL and HTML tags within the pages. We introduce new sets of features specific to web documents, which are extracted from URL and HTML tags. The present work is an attempt to evaluate the performance of the proposed sets of features, and to discuss their characteristics. Finally, we conclude which is an appropriate set of features in automatic genre classification of web documents.
  4. Barthel, S.; Tönnies, S.; Balke, W.-T.: Large-scale experiments for mathematical document classification (2013) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 1056) [ClassicSimilarity], result of:
          0.03354964 = score(doc=1056,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 1056, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1056)
      0.33333334 = coord(1/3)
    
    Abstract
    The ever increasing amount of digitally available information is curse and blessing at the same time. On the one hand, users have increasingly large amounts of information at their fingertips. On the other hand, the assessment and refinement of web search results becomes more and more tiresome and difficult for non-experts in a domain. Therefore, established digital libraries offer specialized collections with a certain degree of quality. This quality can largely be attributed to the great effort invested into semantic enrichment of the provided documents e.g. by annotating their documents with respect to a domain-specific taxonomy. This process is still done manually in many domains, e.g. chemistry CAS, medicine MeSH, or mathematics MSC. But due to the growing amount of data, this manual task gets more and more time consuming and expensive. The only solution for this problem seems to employ automated classification algorithms, but from evaluations done in previous research, conclusions to a real world scenario are difficult to make. We therefore conducted a large scale feasibility study on a real world data set from one of the biggest mathematical digital libraries, i.e. Zentralblatt MATH, with special focus on its practical applicability.
  5. Fang, H.: Classifying research articles in multidisciplinary sciences journals into subject categories (2015) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 2194) [ClassicSimilarity], result of:
          0.03354964 = score(doc=2194,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 2194, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2194)
      0.33333334 = coord(1/3)
    
    Abstract
    In the Thomson Reuters Web of Science database, the subject categories of a journal are applied to all articles in the journal. However, many articles in multidisciplinary Sciences journals may only be represented by a small number of subject categories. To provide more accurate information on the research areas of articles in such journals, we can classify articles in these journals into subject categories as defined by Web of Science based on their references. For an article in a multidisciplinary sciences journal, the method counts the subject categories in all of the article's references indexed by Web of Science, and uses the most numerous subject categories of the references to determine the most appropriate classification of the article. We used articles in an issue of Proceedings of the National Academy of Sciences (PNAS) to validate the correctness of the method by comparing the obtained results with the categories of the articles as defined by PNAS and their content. This study shows that the method provides more precise search results for the subject category of interest in bibliometric investigations through recognition of articles in multidisciplinary sciences journals whose work relates to a particular subject category.
  6. AlQenaei, Z.M.; Monarchi, D.E.: ¬The use of learning techniques to analyze the results of a manual classification system (2016) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 2836) [ClassicSimilarity], result of:
          0.03354964 = score(doc=2836,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 2836, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2836)
      0.33333334 = coord(1/3)
    
    Abstract
    Classification is the process of assigning objects to pre-defined classes based on observations or characteristics of those objects, and there are many approaches to performing this task. The overall objective of this study is to demonstrate the use of two learning techniques to analyze the results of a manual classification system. Our sample consisted of 1,026 documents, from the ACM Computing Classification System, classified by their authors as belonging to one of the groups of the classification system: "H.3 Information Storage and Retrieval." A singular value decomposition of the documents' weighted term-frequency matrix was used to represent each document in a 50-dimensional vector space. The analysis of the representation using both supervised (decision tree) and unsupervised (clustering) techniques suggests that two pairs of the ACM classes are closely related to each other in the vector space. Class 1 (Content Analysis and Indexing) is closely related to Class 3 (Information Search and Retrieval), and Class 4 (Systems and Software) is closely related to Class 5 (Online Information Services). Further analysis was performed to test the diffusion of the words in the two classes using both cosine and Euclidean distance.
  7. Smiraglia, R.P.; Cai, X.: Tracking the evolution of clustering, machine learning, automatic indexing and automatic classification in knowledge organization (2017) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 3627) [ClassicSimilarity], result of:
          0.03354964 = score(doc=3627,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 3627, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3627)
      0.33333334 = coord(1/3)
    
    Abstract
    A very important extension of the traditional domain of knowledge organization (KO) arises from attempts to incorporate techniques devised in the computer science domain for automatic concept extraction and for grouping, categorizing, clustering and otherwise organizing knowledge using mechanical means. Four specific terms have emerged to identify the most prevalent techniques: machine learning, clustering, automatic indexing, and automatic classification. Our study presents three domain analytical case analyses in search of answers. The first case relies on citations located using the ISKO-supported "Knowledge Organization Bibliography." The second case relies on works in both Web of Science and SCOPUS. Case three applies co-word analysis and citation analysis to the contents of the papers in the present special issue. We observe scholars involved in "clustering" and "automatic classification" who share common thematic emphases. But we have found no coherence, no common activity and no social semantics. We have not found a research front, or a common teleology within the KO domain. We also have found a lively group of authors who have succeeded in submitting papers to this special issue, and their work quite interestingly aligns with the case studies we report. There is an emphasis on KO for information retrieval; there is much work on clustering (which involves conceptual points within texts) and automatic classification (which involves semantic groupings at the meta-document level).
  8. Kragelj, M.; Borstnar, M.K.: Automatic classification of older electronic texts into the Universal Decimal Classification-UDC (2021) 0.01
    0.0089465715 = product of:
      0.026839713 = sum of:
        0.026839713 = weight(_text_:search in 175) [ClassicSimilarity], result of:
          0.026839713 = score(doc=175,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.15360467 = fieldWeight in 175, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=175)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose The purpose of this study is to develop a model for automated classification of old digitised texts to the Universal Decimal Classification (UDC), using machine-learning methods. Design/methodology/approach The general research approach is inherent to design science research, in which the problem of UDC assignment of the old, digitised texts is addressed by developing a machine-learning classification model. A corpus of 70,000 scholarly texts, fully bibliographically processed by librarians, was used to train and test the model, which was used for classification of old texts on a corpus of 200,000 items. Human experts evaluated the performance of the model. Findings Results suggest that machine-learning models can correctly assign the UDC at some level for almost any scholarly text. Furthermore, the model can be recommended for the UDC assignment of older texts. Ten librarians corroborated this on 150 randomly selected texts. Research limitations/implications The main limitations of this study were unavailability of labelled older texts and the limited availability of librarians. Practical implications The classification model can provide a recommendation to the librarians during their classification work; furthermore, it can be implemented as an add-on to full-text search in the library databases. Social implications The proposed methodology supports librarians by recommending UDC classifiers, thus saving time in their daily work. By automatically classifying older texts, digital libraries can provide a better user experience by enabling structured searches. These contribute to making knowledge more widely available and useable. Originality/value These findings contribute to the field of automated classification of bibliographical information with the usage of full texts, especially in cases in which the texts are old, unstructured and in which archaic language and vocabulary are used.
  9. Yoon, Y.; Lee, C.; Lee, G.G.: ¬An effective procedure for constructing a hierarchical text classification system (2006) 0.01
    0.007946501 = product of:
      0.0238395 = sum of:
        0.0238395 = product of:
          0.047679 = sum of:
            0.047679 = weight(_text_:22 in 5273) [ClassicSimilarity], result of:
              0.047679 = score(doc=5273,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2708308 = fieldWeight in 5273, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5273)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 16:24:52
  10. Yi, K.: Automatic text classification using library classification schemes : trends, issues and challenges (2007) 0.01
    0.007946501 = product of:
      0.0238395 = sum of:
        0.0238395 = product of:
          0.047679 = sum of:
            0.047679 = weight(_text_:22 in 2560) [ClassicSimilarity], result of:
              0.047679 = score(doc=2560,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.2708308 = fieldWeight in 2560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2560)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2008 18:31:54
  11. Liu, R.-L.: Context recognition for hierarchical text classification (2009) 0.01
    0.0068112854 = product of:
      0.020433856 = sum of:
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 2760) [ClassicSimilarity], result of:
              0.040867712 = score(doc=2760,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2009 19:11:54
  12. Zhu, W.Z.; Allen, R.B.: Document clustering using the LSI subspace signature model (2013) 0.01
    0.0068112854 = product of:
      0.020433856 = sum of:
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 690) [ClassicSimilarity], result of:
              0.040867712 = score(doc=690,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 690, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=690)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    23. 3.2013 13:22:36
  13. Egbert, J.; Biber, D.; Davies, M.: Developing a bottom-up, user-based method of web register classification (2015) 0.01
    0.0068112854 = product of:
      0.020433856 = sum of:
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 2158) [ClassicSimilarity], result of:
              0.040867712 = score(doc=2158,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 2158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2158)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    4. 8.2015 19:22:04
  14. Liu, R.-L.: ¬A passage extractor for classification of disease aspect information (2013) 0.01
    0.0056760716 = product of:
      0.017028214 = sum of:
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 1107) [ClassicSimilarity], result of:
              0.03405643 = score(doc=1107,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 1107, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1107)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    28.10.2013 19:22:57