Search (71 results, page 2 of 4)

  • × language_ss:"e"
  • × theme_ss:"Begriffstheorie"
  • × type_ss:"a"
  1. Cruse, D.A.: Hyponymy and its varieties (2002) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 1186) [ClassicSimilarity], result of:
              0.0108246 = score(doc=1186,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 1186, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1186)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter deals with the paradigmatic sense relation of hyponymy as manifested in nouns. A number of approaches to the definition of the relation are discussed, with particular attention being given to the problems of framing a prototype-theoretical characterization. An account is offered of a number of sub-varieties of hyponymy.
    Type
    a
  2. Kolmayer, E.; Lavandier, J.; Roger, D.: Conceptual maps : users navigation through paradigmatic and syntagmatic links (1998) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 58) [ClassicSimilarity], result of:
              0.010589487 = score(doc=58,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 58, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=58)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This experiment, focused on the users behaviour, aims to study the search topic representation they build and to highlight the role of a graphical thesaurus on their mental models and searching behaviour. The users expertise in the field is considered. The results show how difficult it is to structure a field; they also point out how much a graphical thesaurus could contribute to such a task, but also its restricted role in the query task. They urge us to think over which shape is proper to the conceptual interface and the variety of links that have to be taken into account
    Type
    a
  3. Fellbaum, C.: On the semantics of troponymy (2002) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 1191) [ClassicSimilarity], result of:
              0.010589487 = score(doc=1191,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 1191, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1191)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The principal relation linking verbs in a semantic network is the manner relation (or "troponymy"). We examine the nature of troponymy across different semantic domains and verb classes in an attempt to arrive at a more subtle understanding of this intuitive relation. Troponymy is not a semantically homogeneous relation; rather, it is polysemous and encompasses distinct sub-relations. We identify and discuss Manner, Function, and Result. Furthermore, different kinds of troponyms differ from their semantically less elaborated superordinates in their syntactic behavior. In some cases, troponyms exhibit a wider range of syntactic altemations; in other cases, the troponyms are more restricted in their argument-projecting properties.
    Type
    a
  4. Gemberling, T.: FRSAD, Semiotics, and FRBR-LRM (2016) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 5118) [ClassicSimilarity], result of:
              0.010589487 = score(doc=5118,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 5118, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5118)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Philosophy grapples with the deepest and most difficult questions in human life. In a 2012 article, Jonathan Furner raises questions about the "Functional Requirements for Subject Authority Data" (FRSAD) model. Can the FRSAD framers really avoid tackling philosophical questions as they attempt to do-the long-running dispute between nominalists and realists, in particular? This article attempts to flesh out a realist position while showing some implications for the new Functional Requirements for Bibliographic Records-Library Reference Model. It is not clear that FRSAD really takes a realist view, as Furner claims, and a position on the nominalist-realist debate is not necessary for information professionals.
    Type
    a
  5. McCray, A.T.; Bodenreider, O.: ¬A conceptual framework for the biomedical domain (2002) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 1207) [ClassicSimilarity], result of:
              0.00994303 = score(doc=1207,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 1207, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1207)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Specialized domains often come with an extensive terminology, suitable for storing and exchanging information, but not necessarily for knowledge processing. Knowledge structures such as semantic networks, or ontologies, are required to explore the semantics of a domain. The UMLS project at the National Library of Medicine is a research effort to develop knowledge-based resources for the biomedical domain. The Metathesaurus is a large body of knowledge that defines and inter-relates 730,000 biomedical concepts, and the Semantic Network defines the semantic principles that apply to this domain. This chapter presents these two knowledge sources and illustrates through a research study how they can collaborate to further structure the domain. The limits of the approach are discussed.
    Type
    a
  6. Hovy, E.: Comparing sets of semantic relations in ontologies (2002) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2178) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2178,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2178, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2178)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A set of semantic relations is created every time a domain modeler wants to solve some complex problem computationally. These relations are usually organized into ontologies. But three is little standardization of ontologies today, and almost no discussion an ways of comparing relations, of determining a general approach to creating relations, or of modeling in general. This chapter outlines an approach to establishing a general methodology for comparing and justifying sets of relations (and ontologies in general). It first provides several dozen characteristics of ontologies, organized into three taxonomies of increasingly detailed features, by which many essential characteristics of ontologies can be described. These features enable one to compare ontologies at a general level, without studying every concept they contain. But sometimes it is necessary to make detailed comparisons of content. The chapter then illustrates one method for determining salient points for comparison, using algorithms that semi-automatically identify similarities and differences between ontologies.
    Type
    a
  7. Rahmstorf, G.: ¬An integrated conceptual representation for words and phrases (1992) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 2415) [ClassicSimilarity], result of:
              0.009567685 = score(doc=2415,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 2415, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2415)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Discourse and lexical meaning. Proceedings of a Workshop of the DFG Sonderforschungsbereich 340, Stuttgart, 30.11.-1.12.1992. Ed.: P. Bosch u. P. Gerstl
    Type
    a
  8. Dahlberg, I.: Concept and definition theory (1989) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 962) [ClassicSimilarity], result of:
              0.009471525 = score(doc=962,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=962)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Sekhar, M.; Ekbote, E.R.: Cognitive skills of conceptualisation process and types of concepts (1992) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 2381) [ClassicSimilarity], result of:
              0.009471525 = score(doc=2381,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 2381, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2381)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Based upon the existing cognitive theories and available related literature, the hypothesis "Conceptualisation process involves a set of specific cognitive skills" has been evolved. An attempt has been made to identify these cognitive skills that are directly involving in conceptualisation process and the outcome is the identification of 13 cognitve skills that are essential for conceptualisation process. This research is directed towards evolving a new concept classification to facilitate learning and teaching. Here we classify the concepts into six categories based upon their attributes and attribute's relations. A specific "Concept analysis ability" tool is also developed to measure the 'concept analysis ability' of secondary school teachers
    Type
    a
  10. Alexander, P.A.; Schallert, D.L.; Hare, V.C.: Coming to terms : how researchers in learning and literacy talk about knowledge (1991) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 5673) [ClassicSimilarity], result of:
              0.009471525 = score(doc=5673,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 5673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5673)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Barite, M.G.: ¬The notion of "category" : its implications in subject analysis and in the construction and evaluation of indexing languages (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 6036) [ClassicSimilarity], result of:
              0.009471525 = score(doc=6036,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 6036, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6036)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The notion of category, from Aristotle and Kant to the present time, has been used as a basic intellectual tool for the analysis of the existence and changeableness of things. Ranganathan was the first to extrapolate the concept into the Theory of Classification, placing it as an essential axis for the logical organization of knowledge and the construction of indexing languages. This paper proposes a conceptual and methodological reexamination of the notion of category from a functional and instrumental perspective, and tries to clarify the essential characters of categories in that context, and their present implications regarding the construction and evaluation of indexing languages
    Type
    a
  12. Pathak, L.P.: Concept-term relationship and a classified schedule of isolates for the term 'concept' (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 6046) [ClassicSimilarity], result of:
              0.009471525 = score(doc=6046,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 6046, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6046)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Draws attention to the efforts to define the terms 'concept' and 'term' and suggests a schedule of isolates for the term 'concept' under eight headings: 0. Concept; 1. Theoretical aspects; 2. Learning theory and Psychological aspects; 3. Origin, evolution, formation, construction; 4. Semantic aspects; 5.Terms and Terminology; 6. Usage and discipline-specific applications; and 7. Concepts and ISAR systems. The schedule also includes about 150 aspects/isolate terms related to 'concept' along with the name of the authors who have used them. The schedule is intended to help in identifying the various aspects of a concept with the help of the terms used for them. These aspects may guide to some extent, in dissecting and seeing the social science concepts from various point of views
    Type
    a
  13. Nakamura, Y.: Subdivisions vs. conjunctions : a discussion on concept theory (1998) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 69) [ClassicSimilarity], result of:
              0.009471525 = score(doc=69,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 69, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=69)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    After studying the relations between two words(nouns) that constitute a compound term, the relation between corresponding concepts discussed. The impossibility of having a conjunction between two concepts that have no common feature causes inconvenience in the application of concept theory to information retrieval problems. Another kind of conjunctions, different from that by co-occurrence, is proposed and characteristics of this conjunction is studied. It revealed that one of new ones has the same character with colon combination in UDC. The possibility of having three kinds of conjunction including Wsterian concept conjunction is presented. It is also discussed that subdivisions can be replaced by new conjunctions
    Type
    a
  14. Guarino, N.; Welty, C.: Identity and subsumption (2002) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 1195) [ClassicSimilarity], result of:
              0.009471525 = score(doc=1195,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 1195, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1195)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The intuitive simplicity of the so-called is-a (or subsumption) relationship has led to widespread ontological misuse. Where previous work has focused largely an the semantics of the relationship itself, we concentrate here an the ontological nature of its arguments, in Order to tell whether a single is-a link is ontologically well-founded. For this purpose, we introduce some techniques based an the philosophical notions of identity, unity, and essence, which have been adapted to the needs of taxonomy design. We demonstrate the effectiveness of these techniques by taking real examples of poorly structured taxonomies and revealing cases of invalid generalization.
    Type
    a
  15. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation (1995) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 4745) [ClassicSimilarity], result of:
              0.009374379 = score(doc=4745,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 4745, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4745)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Defends the systematic introduction of formal ontological principles in the current practice of knowledge engineering, and explores the various relationships between ontology and knowledge representatiom. Presents recent trends in this research area. Compares the dichotomy between reasoning and representation to the philosophical distinction between epistemology and ontology. Introduces the notion of the ontological level, intermediate between the epistemological and conceptual levels as a way to characterize a knowledge representation formalism taking into account the intended meaning of its primitives
    Type
    a
  16. Thellefsen, M.: ¬The dynamics of information representation and knowledge mediation (2006) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 170) [ClassicSimilarity], result of:
              0.009374379 = score(doc=170,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 170, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=170)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper present an alternative approach to knowledge organization based on semiotic reasoning. The semantic distance between domain specific terminology and KOS is analyzed by means of their different sign systems. It is argued that a faceted approach may provide the means needed to minimize the gap between knowledge domains and KOS.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  17. Gerbé, O.; Mineau, G.W.; Keller, R.K.: Conceptual graphs, metamodelling, and notation of concepts : fundamental issues (2000) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 5078) [ClassicSimilarity], result of:
              0.009076704 = score(doc=5078,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 5078, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5078)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge management, in particular corporate knowledge management, is a challenge companies and researchers have to meet. The conceptual graph formalism is a good candidate for the representation of corporate knowledge, and for the development of knowledge management systems. But many of the issues concerning the use of conceptual graphs as a metalanguage have not been worked out in detail. By introducing a function that maps higher level to lower level, this paper clarifies the metalevel semantics, notation and manipulation of concepts in the conceptual graph formalism. In addition, this function allows metamodeling activities to take place using the CG notation
    Type
    a
  18. Friedman, A.; Thellefsen, M.: Concept theory and semiotics in knowledge organization (2011) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 292) [ClassicSimilarity], result of:
              0.009076704 = score(doc=292,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 292, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=292)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to explore the basics of semiotic analysis and concept theory that represent two dominant approaches to knowledge representation, and explore how these approaches are fruitful for knowledge organization. Design/methodology/approach - In particular the semiotic theory formulated by the American philosopher C.S. Peirce and the concept theory formulated by Ingetraut Dahlberg are investigated. The paper compares the differences and similarities between these two theories of knowledge representation. Findings - The semiotic model is a general and unrestricted model of signs and Dahlberg's model is thought from the perspective and demand of better knowledge organization system (KOS) development. It is found that Dahlberg's concept model provides a detailed method for analyzing and representing concepts in a KOS, where semiotics provides the philosophical context for representation. Originality/value - This paper is the first to combine theories of knowledge representation, semiotic and concept theory, within the context of knowledge organization.
    Type
    a
  19. Barsalou, L.W.: Frames, concepts, and conceptual fields (1992) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3217) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3217,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3217, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3217)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this chapter I propose that frames provide the fundamental representation of knowledge in human cognition. In the first section, I raise problems with the feature list representations often found in theories of knowledge, and I sketch the solutions that frames provide to them. In the second section, I examine the three fundamental concepts of frames: attribute-value sets, structural invariants, and constraints. Because frames also represents the attributes, values, structural invariants, and constraints within a frame, the mechanism that constructs frames builds them recursively. The frame theory I propose borrows heavily from previous frame theories, although its collection of representational components is somewhat unique. Furthermore, frame theorists generally assume that frames are rigid configurations of independent attributes, whereas I propose that frames are dynamic relational structures whose form is flexible and context dependent. In the third section, I illustrate how frames support a wide variety of representational tasks central to conceptual processing in natural and artificial intelligence. Frames can represent exemplars and propositions, prototypes and membership, subordinates and taxonomies. Frames can also represent conceptual combinations, event sequences, rules, and plans. In the fourth section, I show how frames define the extent of conceptual fields and how they provide a powerful productive mechanism for generating specific concepts within a field.
    Source
    Frames, fields and contrasts: new essays in semantic and lexical organization. Eds.: A. Lehrer u. E.F. Kittay
    Type
    a
  20. Szostak, R.: Complex concepts into basic concepts (2011) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 4926) [ClassicSimilarity], result of:
              0.008285859 = score(doc=4926,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 4926, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4926)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interdisciplinary communication, and thus the rate of progress in scholarly understanding, would be greatly enhanced if scholars had access to a universal classification of documents or ideas not grounded in particular disciplines or cultures. Such a classification is feasible if complex concepts can be understood as some combination of more basic concepts. There appear to be five main types of concept theory in the philosophical literature. Each provides some support for the idea of breaking complex into basic concepts that can be understood across disciplines or cultures, but each has detractors. None of these criticisms represents a substantive obstacle to breaking complex concepts into basic concepts within information science. Can we take the subject entries in existing universal but discipline-based classifications, and break these into a set of more basic concepts that can be applied across disciplinary classes? The author performs this sort of analysis for Dewey classes 300 to 339.9. This analysis will serve to identify the sort of 'basic concepts' that would lie at the heart of a truly universal classification. There are two key types of basic concept: the things we study (individuals, rocks, trees), and the relationships among these (talking, moving, paying).
    Type
    a